Single Remote Sensing Image Dehazing Using Robust Light-Dark Prior
Abstract
:1. Introduction
- For the regularity of satellite imaging, a semitransparent cloud was taken as an example, and a shadowing model and corresponding hybrid model were proposed. Then, a two-stage dehazing algorithm was proposed based on the haze hybrid model;
- An RLDP-based single RSI dehazing method which removes haze based on the robust dark channel prior (RDCP) and removes shadow with the robust light channel prior (RLCP) was proposed. A statistical-based criterion is also used to improve the robustness of RLDP;
- In order to solve the patch size setting problem, a CRME-based appropriate patch size search criterion was proposed. This method can adaptively adjust the patch size according to the contrast measure of a single image.
2. State of the Art
3. Robust Light-Dark Prior
3.1. Haze Hybrid Model
3.2. Robust Light-Dark Prior
3.3. Haze Removal Based on RLDP
Algorithm 1 RLDP-based dehazing method. |
Input: Haze and shadow image S, Patch size Output: Clear image S
|
3.4. CRME-Based Appropriate Patch Size Search Criterion
4. Experiments
4.1. Experimental Setup
4.2. Quantitative Evaluations
4.3. Qualitative Evaluations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Després, V.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.; Buryak, G.; Elbert, W.; Andreae, M.O.; Pöschl, U.; Jaenicke, R.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Han, J.; Zhang, S.; Fan, N.; Ye, Z. Local Patchwise Minimal and Maximal Values Prior for Single Optical Remote Sensing Image Dehazing. Inf. Sci. 2022, 606, 173–193. [Google Scholar] [CrossRef]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 11908–11915. [Google Scholar]
- Fu, M.; Liu, H.; Yu, Y.; Chen, J.; Wang, K. DW-GAN: A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 203–212. [Google Scholar]
- Liu, Q.; Gao, X.; He, L.; Lu, W. Single image dehazing with depth-aware non-local total variation regularization. IEEE Trans. Image Process. 2018, 27, 5178–5191. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- Salazar-Colores, S.; Cabal-Yepez, E.; Ramos-Arreguin, J.M.; Botella, G.; Ledesma-Carrillo, L.M.; Ledesma, S. A fast image dehazing algorithm using morphological reconstruction. IEEE Trans. Image Process. 2018, 28, 2357–2366. [Google Scholar] [CrossRef]
- Nishino, K.; Kratz, L.; Lombardi, S. Bayesian defogging. Int. J. Comput. Vis. 2012, 98, 263–278. [Google Scholar] [CrossRef]
- Berman, D.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1674–1682. [Google Scholar]
- Bui, T.M.; Kim, W. Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 2017, 27, 999–1009. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 720–734. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, X.; Wu, X.; Liu, Y. Fast image dehazing method based on linear transformation. IEEE Trans. Multimed. 2017, 19, 1142–1155. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, H.; Hu, G.; Li, Y.; Qi, G.; Mazur, N. A novel fast single image dehazing algorithm based on artificial multiexposure image fusion. IEEE Trans. Instrum. Meas. 2020, 70, 1–23. [Google Scholar] [CrossRef]
- Han, Y.; Yin, M.; Duan, P.; Ghamisi, P. Edge-preserving filtering-based dehazing for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Li, C.; Yuan, C.; Pan, H.; Yang, Y.; Wang, Z.; Zhou, H.; Xiong, H. Single-Image Dehazing Based on Improved Bright Channel Prior and Dark Channel Prior. Electronics 2023, 12, 299. [Google Scholar] [CrossRef]
- Ullah, H.; Muhammad, K.; Irfan, M.; Anwar, S.; Sajjad, M.; Imran, A.S.; de Albuquerque, V.H.C. Light-DehazeNet: A Novel Lightweight CNN Architecture for Single Image Dehazing. IEEE Trans. Image Process. 2021, 30, 8968–8982. [Google Scholar] [CrossRef]
- Jia, T.; Li, J.; Zhuo, L.; Li, G. Effective Meta-Attention Dehazing Networks for Vision-Based Outdoor Industrial Systems. IEEE Trans. Ind. Inform. 2021, 18, 1511–1520. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, H.; Fu, M.; Chen, J.; Wang, X.; Wang, K. A two-branch neural network for non-homogeneous dehazing via ensemble learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 193–202. [Google Scholar]
- Kan, S.; Zhang, Y.; Zhang, F.; Cen, Y. A GAN-based input-size flexibility model for single image dehazing. Signal Process. Image Commun. 2022, 102, 116599. [Google Scholar] [CrossRef]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Li, R.; Pan, J.; Li, Z.; Tang, J. Single image dehazing via conditional generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8202–8211. [Google Scholar]
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced pix2pix dehazing network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 8160–8168. [Google Scholar]
- Li, R.; Pan, J.; He, M.; Li, Z.; Tang, J. Task-oriented network for image dehazing. IEEE Trans. Image Process. 2020, 29, 6523–6534. [Google Scholar] [CrossRef]
- Chen, W.T.; Fang, H.Y.; Ding, J.J.; Kuo, S.Y. PMHLD: Patch map-based hybrid learning DehazeNet for single image haze removal. IEEE Trans. Image Process. 2020, 29, 6773–6788. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Shen, Y.; Zhou, Y. RefineDNet: A weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process. 2021, 30, 3391–3404. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Kong, C.; Dai, L. Unpaired Image Dehazing With Physical-Guided Restoration and Depth-Guided Refinement. IEEE Signal Process. Lett. 2022, 29, 587–591. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y. Memory-Oriented Unpaired Learning for Single Remote Sensing Image Dehazing. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision Transformers for Single Image Dehazing. arXiv 2022, arXiv:2204.03883. [Google Scholar]
- Sun, L.; Zhang, Y.; Chang, X.; Wang, Y.; Xu, J. Cloud-aware generative network: Removing cloud from optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2019, 17, 691–695. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X. A coarse-to-fine two-stage attentive network for haze removal of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1751–1755. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Dai, L.; Kong, C. Hybrid high-resolution learning for single remote sensing satellite image Dehazing. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Y.; Fu, X. An Image Dehazing Approach with Adaptive Color Constancy for Poor Visible Conditions. IEEE Geosci. Remote Sens. Lett. 2021, 19. [Google Scholar] [CrossRef]
- Wen, X.; Pan, Z.; Hu, Y.; Liu, J. Generative adversarial learning in YUV color space for thin cloud removal on satellite imagery. Remote Sens. 2021, 13, 1079. [Google Scholar] [CrossRef]
- Bie, Y.; Yang, S.; Huang, Y. Single Remote Sensing Image Dehazing using Gaussian and Physics-Guided Process. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, X.; Rong, W.; Xu, H. Cloud Removal for Optical Remote Sensing Imagery Using Distortion Coding Network Combined with Compound Loss Functions. Remote Sens. 2022, 14, 3452. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, D.; Yan, Y.; Kwong, S.; Chen, J.; Duan, L.Y. IDeRs: Iterative dehazing method for single remote sensing image. Inf. Sci. 2019, 489, 50–62. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Y.; Wang, C.; Ma, J. Image dehazing via enhancement, restoration, and fusion: A survey. Inf. Fusion 2022, 86, 146–170. [Google Scholar] [CrossRef]
- Fattal, R. Dehazing using color-lines. ACM Trans. Graph. (TOG) 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Chen, W.T.; Ding, J.J.; Kuo, S.Y. PMS-net: Robust haze removal based on patch map for single images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11681–11689. [Google Scholar]
- Hong, S.; Kang, M.G. Single image dehazing based on pixel-wise transmission estimation with estimated radiance patches. Neurocomputing 2022, 492, 545–560. [Google Scholar] [CrossRef]
- Lin, D.; Xu, G.; Wang, X.; Wang, Y.; Sun, X.; Fu, K. A remote sensing image dataset for cloud removal. arXiv 2019, arXiv:1901.00600. [Google Scholar]
- Liu, X.; Li, H.; Zhu, C. Joint contrast enhancement and exposure fusion for real-world image dehazing. IEEE Trans. Multimed. 2021, 24, 3934–3946. [Google Scholar] [CrossRef]
- Xie, J.; Hou, G.; Wang, G.; Pan, Z. A variational framework for underwater image dehazing and deblurring. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 3514–3526. [Google Scholar] [CrossRef]
- Kumar, B.P.; Kumar, A.; Pandey, R. Region-based adaptive single image dehazing, detail enhancement and pre-processing using auto-colour transfer method. Signal Process. Image Commun. 2022, 100, 116532. [Google Scholar] [CrossRef]
Methods | Alpine | Flat | Sandy | Mountain | Sea | Overall |
---|---|---|---|---|---|---|
DCP | 0.81/15.18/12.2 | 0.88/20.78/15.17 | 0.81/11.97/10.46 | 0.89/20.10/9.52 | 0.92/18.67/12.59 | 0.86/17.10/12.31 |
CL | 0.96/27.94/10.12 | 0.91/22.10/12.31 | 0.79/15.33/11.4 | 0.94/25.32/ 19.62 | 0.68/13.19/19.27 | 0.85/20.26/13.96 |
HL | 0.86/21.02/16.38 | 0.67/15.27/18.2 | 0.45/11.94/15.26 | 0.85/20.02/19.61 | 0.60/11.87/18.53 | 0.67/15.55 /17.38 |
CEEF-TMM | 0.75/16.67/16.19 | 0.85/22.51/20.49 | 0.74/8.79/10.84 | 0.88/19.65/9.38 | 0.88/19.13/13.14 | 0.82/17.18/14.62 |
UNTV | 0.67/18.89/18.88 | 0.52/18.42/22.88 | 0.32/11.18/18.38 | 0.49/16.33/30.2 | 0.47/12.0/19.04 | 0.49/15.29/20.97 |
ACT | 0.88/20.72/12.1 | 0.92/22.91/ 14.44 | 0.85/15.82/ 8.84 | 0.87/19.18/8.14 | 0.92/22.06/12.56 | 0.89/20.29/11.61 |
RLDP | 0.93/23.23/7.66 | 0.92/25.04/9.51 | 0.87/16.15/8.51 | 0.93/25.42/11.63 | 0.9/14.72/8.64 | 0.91/20.46/8.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Zhou, Y.; Liao, X.; Duo, B. Single Remote Sensing Image Dehazing Using Robust Light-Dark Prior. Remote Sens. 2023, 15, 938. https://doi.org/10.3390/rs15040938
Ning J, Zhou Y, Liao X, Duo B. Single Remote Sensing Image Dehazing Using Robust Light-Dark Prior. Remote Sensing. 2023; 15(4):938. https://doi.org/10.3390/rs15040938
Chicago/Turabian StyleNing, Jin, Yanhong Zhou, Xiaojuan Liao, and Bin Duo. 2023. "Single Remote Sensing Image Dehazing Using Robust Light-Dark Prior" Remote Sensing 15, no. 4: 938. https://doi.org/10.3390/rs15040938
APA StyleNing, J., Zhou, Y., Liao, X., & Duo, B. (2023). Single Remote Sensing Image Dehazing Using Robust Light-Dark Prior. Remote Sensing, 15(4), 938. https://doi.org/10.3390/rs15040938