MMCAN: Multi-Modal Cross-Attention Network for Free-Space Detection with Uncalibrated Hyperspectral Sensors
Abstract
:1. Introduction
- We propose a multi-modal free-space detection algorithm in an autonomous driving system with uncalibrated multi-spectral data.
- We propose a cross-attention module that combines uncalibrated modalities. The attention mechanism extracts the relevant information of multi-modal data without pixel-wise alignment.
- We design a multi-modal fusion architecture based on a triplet gate. In this structure, the participation of one primary modality is strengthened while the contributions of other modalities are maintained.
- Experimental results on the HSI Road dataset demonstrate the effectiveness of the proposed multi-modal segmentation network compared with other existing approaches.
2. Related Work
2.1. Free-Space Detection
2.2. Multi-Modal Feature Fusion
3. Method
3.1. Network Architecture
3.2. Multi-Modal Cross-Attention
3.3. Triplet Gate Fusion
4. Experiments
4.1. Experimental Results
4.2. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DCNNs | Deep Convolutional Neural Networks |
MMML | Multi-Modal Machine Learning |
References
- Zhu, H.; Yuen, K.-V.; Mihaylova, L.; Leung, H. Overview of environment perception for intelligent vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2584–2601. [Google Scholar] [CrossRef] [Green Version]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.-X.; Lu, X.-S.; Wang, C.; Shen, H.-Z.; Zhuo, Y.-W.; Deng, L.-J. Patchmask: A data augmentation strategy with gaussian noise in hyperspectral images. Remote Sens. 2022, 14, 6308. [Google Scholar] [CrossRef]
- Timmer, B.; Reshitnyk, L.Y.; Hessing-Lewis, M.; Juanes, F.; Costa, M. Comparing the use of red-edge and near-infrared wavelength ranges for detecting submerged kelp canopy. Remote Sens. 2022, 14, 2241. [Google Scholar] [CrossRef]
- Fedorov, S.; Molkov, A.; Kalinskaya, D. Aerosol optical properties above productive waters of gorky reservoir for atmospheric correction of sentinel-3/olci images. Remote Sens. 2022, 14, 6130. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Gong, Y.; Jin, D.; Li, J.; Wang, L.; Zhu, Y.; Liu, H. Openmpd: An open multimodal perception dataset for autonomous driving. IEEE Trans. Veh. Technol. 2022, 71, 2437–2447. [Google Scholar] [CrossRef]
- Fritsch, J.; Kuehnl, T.; Geiger, A. A new performance measure and evaluation benchmark for road detection algorithms. In Proceedings of the International Conference on Intelligent Transportation Systems, The Hague, The Netherlands, 6–9 October 2013. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Shivakumar, S.S.; Rodrigues, N.; Zhou, A.; Miller, I.D.; Kumar, V.; Taylor, C.J. Pst900: Rgb-thermal calibration, dataset and segmentation network. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 9441–9447. [Google Scholar]
- Wei, X.; Zhang, T.; Li, Y.; Zhang, Y.; Wu, F. Multi-modality cross attention network for image and sentence matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10941–10950. [Google Scholar]
- Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated convolutional neural network for semantic segmentation in high-resolution images. Remote Sens. 2017, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Liu, H.; Yao, Y.; Tao, S.; Tang, Z.; Lu, J. Hsi road: A hyper spectral image dataset for road segmentation. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo, London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Couprie, C.; Farabet, C.; Najman, L.; LeCun, Y. Indoor semantic segmentation using depth information. arXiv 2013, arXiv:1301.3572. [Google Scholar]
- Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 213–228. [Google Scholar]
- Eigen, D.; Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the IEEE international Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2650–2658. [Google Scholar]
- Lin, D.; Fidler, S.; Urtasun, R. Holistic scene understanding for 3d object detection with rgbd cameras. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1417–1424. [Google Scholar]
- Li, Z.; Gan, Y.; Liang, X.; Yu, Y.; Cheng, H.; Lin, L. Lstm-cf: Unifying context modeling and fusion with lstms for rgb-d scene labeling. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 541–557. [Google Scholar]
- Park, S.-J.; Hong, K.-S.; Lee, S. Rdfnet: Rgb-d multi-level residual feature fusion for indoor semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4980–4989. [Google Scholar]
- Wang, H.; Fan, R.; Sun, Y.; Liu, M. Applying surface normal information in drivable area and road anomaly detection for ground mobile robots. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 25–29 October 2020; pp. 2706–2711. [Google Scholar]
- Gu, S.; Zhang, Y.; Tang, J.; Yang, J.; Alvarez, J.M.; Kong, H. Integrating dense lidar-camera road detection maps by a multi-modal crf model. IEEE Trans. Veh. Technol. 2019, 68, 11635–11645. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Tao, D. Progressive lidar adaptation for road detection. IEEE/CAA J. Autom. Sin. 2019, 6, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M. Lidar–camera fusion for road detection using fully convolutional neural networks. Robot. Auton. Syst. 2019, 111, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Yang, J.; Kong, H. A cascaded lidar-camera fusion network for road detection. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 30 May–5 June 2021; pp. 13308–13314. [Google Scholar]
- Wang, H.; Fan, R.; Cai, P.; Liu, M. Sne-roadseg+: Rethinking depth-normal translation and deep supervision for freespace detection. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; pp. 1140–1145. [Google Scholar]
- Qi, L.; Hu, Z.; Zhou, X.; Ni, X.; Chen, F. Multi-sensor fusion of sdgsat-1 thermal infrared and multispectral images. Remote Sens. 2022, 14, 6159. [Google Scholar] [CrossRef]
- Salamati, N.; Larlus, D.; Csurka, G.; Süsstrunk, S. Semantic image segmentation using visible and near-infrared channels. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 461–471. [Google Scholar]
- Salamati, N.; Larlus, D.; Csurka, G.; Süsstrunk, S. Incorporating near-infrared information into semantic image segmentation. arXiv 2014, arXiv:1406.6147. [Google Scholar]
- Choe, G.; Kim, S.-H.; Im, S.; Lee, J.-Y.; Narasimhan, S.G.; Kweon, I.S. Ranus: Rgb and nir urban scene dataset for deep scene parsing. IEEE Robot. Autom. Lett. 2018, 3, 1808–1815. [Google Scholar] [CrossRef]
- Valada, A.; Oliveira, G.L.; Brox, T.; Burgard, W. Deep multispectral semantic scene understanding of forested environments using multimodal fusion. In Proceedings of the International Symposium on Experimental Robotics, Nagasaki, Japan, 3–8 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 465–477. [Google Scholar]
- Sun, L.; Song, X.; Guo, H.; Zhao, G.; Wang, J. Patch-wise semantic segmentation for hyperspectral images via a cubic capsule network with emap features. Remote Sens. 2021, 13, 3497. [Google Scholar] [CrossRef]
- Shen, X.; Weng, L.; Xia, M.; Lin, H. Multi-scale feature aggregation network for semantic segmentation of land cover. Remote Sens. 2022, 14, 6156. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, Q.; Fu, Y.; You, S. Weakly-supervised semantic segmentation in cityscape via hyperspectral image. In Proceedings of the IEEE International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 1117–1126. [Google Scholar]
- Luong, H.-T.; Yamagishi, J. Multimodal speech synthesis architecture for unsupervised speaker adaptation. arXiv 2018, arXiv:1808.06288. [Google Scholar]
- Ma, S.; McDuff, D.; Song, Y. Unpaired image-to-speech synthesis with multimodal information bottleneck. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October– 2 November 2019; pp. 7598–7607. [Google Scholar]
- Hou, J.-C.; Wang, S.-S.; Lai, Y.-H.; Tsao, Y.; Chang, H.-W.; Wang, H.-M. Audio-visual speech enhancement using multimodal deep convolutional neural networks. IEEE Trans. Emerg. Top. Comput. 2018, 2, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Poria, S.; Cambria, E.; Howard, N.; Huang, G.-B.; Hussain, A. Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 2016, 174, 50–59. [Google Scholar] [CrossRef]
- Soleymani, M.; Garcia, D.; Jou, B.; Schuller, B.; Chang, S.-F.; Pantic, M. A survey of multimodal sentiment analysis. Image Vis. Comput. 2017, 65, 3–14. [Google Scholar] [CrossRef]
- Deng, D.; Zhou, Y.; Pi, J.; Shi, B.E. Multimodal utterance-level affect analysis using visual, audio and text features. arXiv 2018, arXiv:1805.00625. [Google Scholar]
- Yu, J.; Li, J.; Yu, Z.; Huang, Q. Multimodal transformer with multi-view visual representation for image captioning. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 4467–4480. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Guo, Y.; Gao, L.; Li, X.; Hanjalic, A.; Shen, H.T. From deterministic to generative: Multimodal stochastic rnns for video captioning. IEEE Trans. Neural Netw. Learn. 2018, 30, 3047–3058. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yao, T.; Zhang, Y.; Mei, T. Learning multimodal attention lstm networks for video captioning. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 537–545. [Google Scholar]
- Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1341–1360. [Google Scholar] [CrossRef] [Green Version]
- Valada, A.; Mohan, R.; Burgard, W. Self-supervised model adaptation for multimodal semantic segmentation. Int. J. Comput. 2020, 128, 1239–1285. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Yao, Y.; Zhou, T.; Xie, G.; Lu, J. Self-supervised multi-modal hybrid fusion network for brain tumor segmentation. IEEE J. Biomed. Health Inform. 2021, 26, 5310–5320. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with uav spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Dong, Z.; Liu, Y. A two-branch convolutional neural network based on multi-spectral entropy rate superpixel segmentation for hyperspectral image classification. Remote Sens. 2022, 14, 1569. [Google Scholar] [CrossRef]
- Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ayed, I.B. Hyperdense-net: A hyper-densely connected cnn for multi-modal image segmentation. IEEE Trans. Med. Imaging 2018, 38, 1116–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Lin, K.-Y.; Wang, J.; Wu, W.; Qian, C.; Li, H.; Zeng, G. Bi-directional cross-modality feature propagation with separation-and-aggregation gate for rgb-d semantic segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 561–577. [Google Scholar]
- Zhuang, X.; Shen, J. Multi-scale patch and multi-modality atlases for whole heart segmentation of mri. Med. Image Anal. 2016, 31, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Chartsias, A.; Papanastasiou, G.; Wang, C.; Semple, S.; Newby, D.E.; Dharmakumar, R.; Tsaftaris, S.A. Disentangle, align and fuse for multimodal and semi-supervised image segmentation. IEEE Trans. Med. Imaging 2020, 40, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Joyce, T.; Chartsias, A.; Tsaftaris, S.A. Robust multi-modal mr image synthesis. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 10–14 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 347–355. [Google Scholar]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.-P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. 2020, 43, 3349–3364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhang, H.; Tang, J.; Hua, X.-S.; Sun, Q. Self-regulation for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 6953–6963. [Google Scholar]
- Dolz, J.; Desrosiers, C.; Ayed, I.B. Ivd-net: Intervertebral disc localization and segmentation in mri with a multi-modal unet. In Proceedings of the International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging, Granada, Spain, 16 September 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 130–143. [Google Scholar]
Methods | Accuracy | mIoU | |||||
---|---|---|---|---|---|---|---|
Urban | Rural | All | Urban | Rural | All | ||
Single-Modal (RGB) | U-Net [16] | 95.88 | 93.82 | 94.39 | 92.87 | 90.25 | 92.12 |
Deeplab-V3 [17] | 95.86 | 93.87 | 94.33 | 93.18 | 90.74 | 92.90 | |
DANet [18] | 97.03 | 94.86 | 95.52 | 94.96 | 91.89 | 93.33 | |
HRNet [61] | 97.49 | 94.74 | 96.42 | 94.46 | 91.77 | 93.20 | |
Self-Regulation [62] | 98.05 | 96.00 | 97.32 | 95.40 | 92.48 | 94.68 | |
Multi-Modal | U-Net [16] | 97.08 | 96.38 | 97.14 | 94.16 | 93.04 | 94.18 |
MU-Net [63] | 97.88 | 95.82 | 97.39 | 95.70 | 92.48 | 94.88 | |
HAFB [50] | 98.10 | 95.95 | 97.32 | 96.64 | 93.98 | 95.29 | |
MMCAN | 98.68 | 97.78 | 98.29 | 97.36 | 95.35 | 96.41 |
Methods | Accuracy | mIoU | ||||
---|---|---|---|---|---|---|
Urban | Rural | All | Urban | Rural | All | |
MMCAN + concatenation | 98.19 | 97.83 | 97.52 | 96.75 | 95.56 | 95.09 |
MMCAN + triplet gate | 98.68 | 97.78 | 98.29 | 97.36 | 95.35 | 96.41 |
Methods | Modalities | Accuracy | mIoU | ||||
---|---|---|---|---|---|---|---|
Urban | Rural | All | Urban | Rural | All | ||
U-Net | RGB | 95.88 | 93.82 | 94.39 | 92.87 | 90.25 | 92.12 |
HSI | 84.37 | 85.76 | 89.00 | 86.58 | 82.22 | 88.59 | |
NIR | 87.27 | 89.94 | 92.53 | 84.64 | 85.52 | 87.40 | |
RGB + HSI | 95.48 | 92.79 | 96.33 | 91.25 | 88.73 | 92.94 | |
RGB + NIR | 94.73 | 94.17 | 95.52 | 91.21 | 89.53 | 92.12 | |
RGB + NIR + HSI | 97.08 | 96.38 | 97.14 | 94.16 | 93.04 | 94.18 | |
MMCAN | RGB | 95.08 | 94.38 | 95.14 | 92.16 | 90.04 | 92.18 |
HSI | 85.85 | 82.45 | 91.23 | 84.42 | 84.26 | 86.17 | |
NIR | 87.41 | 81.88 | 88.57 | 82.32 | 85.17 | 87.56 | |
RGB + HSI | 98.48 | 96.45 | 97.12 | 94.48 | 93.20 | 94.85 | |
RGB + NIR | 98.24 | 91.72 | 96.57 | 95.67 | 92.50 | 93.89 | |
RGB + NIR + HSI | 98.68 | 97.78 | 98.29 | 97.36 | 95.35 | 96.41 |
Layers | mIoU | ||
---|---|---|---|
Urban | Rural | All | |
1 + 2 + 3 + 4 + 5 | 95.78 | 92.73 | 94.91 |
2 + 3 + 4 + 5 | 96.44 | 94.24 | 95.27 |
3 + 4 + 5 (ours) | 97.36 | 95.35 | 96.41 |
4 + 5 | 97.18 | 94.92 | 96.03 |
5 | 96.65 | 93.71 | 94.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, F.; Zhou, T.; Song, Z.; Lu, J. MMCAN: Multi-Modal Cross-Attention Network for Free-Space Detection with Uncalibrated Hyperspectral Sensors. Remote Sens. 2023, 15, 1142. https://doi.org/10.3390/rs15041142
Fang F, Zhou T, Song Z, Lu J. MMCAN: Multi-Modal Cross-Attention Network for Free-Space Detection with Uncalibrated Hyperspectral Sensors. Remote Sensing. 2023; 15(4):1142. https://doi.org/10.3390/rs15041142
Chicago/Turabian StyleFang, Feiyi, Tao Zhou, Zhenbo Song, and Jianfeng Lu. 2023. "MMCAN: Multi-Modal Cross-Attention Network for Free-Space Detection with Uncalibrated Hyperspectral Sensors" Remote Sensing 15, no. 4: 1142. https://doi.org/10.3390/rs15041142
APA StyleFang, F., Zhou, T., Song, Z., & Lu, J. (2023). MMCAN: Multi-Modal Cross-Attention Network for Free-Space Detection with Uncalibrated Hyperspectral Sensors. Remote Sensing, 15(4), 1142. https://doi.org/10.3390/rs15041142