Spatial–Temporal Evolution Monitoring and Ecological Risk Assessment of Coastal Wetlands on Hainan Island, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Classification
2.4. Risk Assessment
3. Results
3.1. Accuracy Assessment
3.2. Wetland Changes
3.3. Risk Assessment
4. Discussion
4.1. Uncertainty Analysis
4.1.1. Wetland Changes
4.1.2. Risk Assessment
4.2. Trends and Potential Drivers of Wetland Change
4.3. Impact of Wetland Change on Ecosystem Stability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.F.; Saco, P.M.; Sandi, S.; Saintilan, N.; Riccardi, G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat. Commun. 2017, 8, 16094. [Google Scholar] [CrossRef] [PubMed]
- Bohorquez, J.J.; Xue, G.; Frankstone, T.; Grima, M.M.; Kleinhaus, K.; Zhao, Y.; Pikitch, E.K. China’s little-known efforts to protect its marine ecosystems safeguard some habitats but omit others. Sci. Adv. 2021, 7, eabj1569. [Google Scholar] [CrossRef] [PubMed]
- McLeod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Bjork, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schuerch, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J.; et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef]
- Yang, X.C.; Zhu, Z.; Qiu, S.; Kroeger, K.D.; Zhu, Z.L.; Covington, S. Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series. Remote Sens. Environ. 2022, 276, 113171. [Google Scholar] [CrossRef]
- Hagger, V.; Worthington, T.A.; Lovelock, C.E.; Adame, M.F.; Amano, T.; Brown, B.M.; Friess, D.A.; Landis, E.; Mumby, P.J.; Morrison, T.H.; et al. Drivers of global mangrove loss and gain in social-ecological systems. Nat. Commun. 2022, 13, 6373. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Richards, D.R.; Thompson, B.S.; Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 2020, 11, 4260. [Google Scholar] [CrossRef]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; Dangendorf, S.; Hogarth, P.; Zanna, L.; Cheng, L.; et al. The causes of sea-level rise since 1900. Nature 2020, 584, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.S.; Kopp, R.E.; Little, C.M.; Horton, B.P. Timing of emergence of modern rates of sea-level rise by 1863. Nat. Commun. 2022, 13, 966. [Google Scholar] [CrossRef]
- Murray, N.J.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Remote Sens. 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.S.; Wen, Y.; Fan, W.; Liu, Q.N.; Tarolli, P. Monitoring the coastal wetlands dynamics in Northeast Italy from 1984 to 2016. Ecol. Indic. 2021, 129, 107906. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Kumar, L.; Reid, M.; Nguyen, H. Remote Sensing Approach for Monitoring Coastal Wetland in the Mekong Delta, Vietnam: Change Trends and Their Driving Forces. Remote Sens. 2021, 13, 3359. [Google Scholar] [CrossRef]
- He, K.; Zhang, Y.; Li, W.; Sun, G.; McNulty, S. Detecting Coastal Wetland Degradation by Combining Remote Sensing and Hydrologic Modeling. Forests 2022, 13, 411. [Google Scholar] [CrossRef]
- Hu, L.; Li, W.; Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Li, Y.; Mao, D.; Wang, Z.; Wang, X.; Tan, X.; Jia, M.; Ren, C. Identifying variable changes in wetlands and their anthropogenic threats bordering the Yellow Sea for water bird conservation. Glob. Ecol. Conserv. 2021, 27, e01613. [Google Scholar] [CrossRef]
- Chen, C.; Feng, J.; Wang, C.; Mao, L.; Zhang, Y. Satellite-Based Monitoring of Coastal Wetlands in Yancheng, Jiangsu Province, China. J. Mar. Sci. Eng. 2022, 10, 829. [Google Scholar] [CrossRef]
- Yan, J.; Du, J.; Su, F.; Zhao, S.; Zhang, S.; Feng, P. Reclamation and Ecological Service Value Evaluation of Coastal Wetlands Using Multispectral Satellite Imagery. Wetlands 2022, 42, 1–15. [Google Scholar] [CrossRef]
- Cai, R.; Ding, R.; Yan, X.; Li, C.; Sun, J.; Tan, H.; Men, W.; Guo, H.; Wang, C. Adaptive response of Dongzhaigang mangrove in China to future sea level rise. Sci. Rep. 2022, 12, 11495. [Google Scholar] [CrossRef]
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, G.; Ma, P.; Jia, X.; Ren, J.; Huang, H.; Zhang, X. Coastal Wetland Mapping with Sentinel-2 MSI Imagery Based on Gravitational Optimized Multilayer Perceptron and Morphological Attribute Profiles. Remote Sens. 2019, 11, 952. [Google Scholar] [CrossRef]
- Chang, M.H.; Meng, X.C.; Sun, W.W.; Yang, G.; Peng, J.T. Collaborative Coupled Hyperspectral Unmixing Based Subpixel Change Detection for Analyzing Coastal Wetlands. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8208–8224. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Tu, C.; Wang, H.; Zhou, Z.; Feng, Z.; Shen, F.; Li, Z. Spatiotemporal Change Detection of Coastal Wetlands Using Multi-Band SAR Coherence and Synergetic Classification. Remote Sens. 2022, 14, 2610. [Google Scholar] [CrossRef]
- Yuan, Y.; Meng, X.; Sun, W.; Yang, G.; Wang, L.; Peng, J.; Wang, Y. Multi-Resolution Collaborative Fusion of SAR, Multispectral and Hyperspectral Images for Coastal Wetlands Mapping. Remote Sens. 2022, 14, 3492. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef]
- Saintilan, N.; Khan, N.S.; Ashe, E.; Kelleway, J.J.; Rogers, K.; Woodroffe, C.D.; Horton, B.P. Thresholds of mangrove survival under rapid sea level rise. Science 2020, 368, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Estrela-Segrelles, C.; Gomez-Martinez, G.; Perez-Martin, M.A. Risk assessment of climate change impacts on Mediterranean coastal wetlands. Application in Jucar River Basin District (Spain). Sci. Total Environ. 2021, 790, 13. [Google Scholar] [CrossRef] [PubMed]
- Chatting, M.; Al-Maslamani, I.; Walton, M.; Skov, M.W.; Kennedy, H.; Husrevoglu, Y.S.; Le Vay, L. Future Mangrove Carbon Storage Under Climate Change and Deforestation. Front. Mar. Sci. 2022, 9, 58. [Google Scholar] [CrossRef]
- Osland, M.J.; Chivoiu, B.; Enwright, N.M.; Thorne, K.M.; Guntenspergen, G.R.; Grace, J.B.; Dale, L.L.; Brooks, W.; Herold, N.; Day, J.W.; et al. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 2022, 8, eabo5174. [Google Scholar] [CrossRef] [PubMed]
- Van der Stocken, T.; Vanschoenwinkel, B.; Carroll, D.; Cavanaugh, K.C.; Koedam, N. Mangrove dispersal disrupted by projected changes in global seawater density. Nat. Clim. Change 2022, 12, 685–691. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Su, F.; Wang, T.; Gao, P. Ecological stability evaluation of tidal flat in coastal estuary: A case study of Liaohe estuary wetland, China. Ecol. Indic. 2021, 130, 108032. [Google Scholar] [CrossRef]
- Duan, H.; Yu, X.; Zhang, L.; Xia, S.; Liu, Y.; Mao, D.; Zhang, G. An evaluating system for wetland ecological risk: Case study in coastal mainland China. Sci. Total Environ. 2022, 828, 154535. [Google Scholar] [CrossRef]
- Fu, C.; Song, X.Q.; Xie, Y.; Wang, C.; Luo, J.B.; Fang, Y.; Cao, B.; Qiu, Z.X. Research on the Spatiotemporal Evolution of Mangrove Forests in the Hainan Island from 1991 to 2021 Based on SVM and Res-UNet Algorithms. Remote Sens. 2022, 14, 5554. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Majumdar, S.D.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. Methodsx 2018, 5, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.V.T. The Ramsar Convention on Wetlands: Its History and Development; Ramsar Convention Bureau: Gland, Switzerland, 1993; pp. i–vi, 1–120. [Google Scholar]
- Dragut, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Dragut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS-J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Wang, W.; Chen, Z.; Ling, Z.; Lv, J. Ecological risk assessment of the wetlands in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2020, 117, 106677. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Xu, X.; Zou, Z.; Chen, B.; Qin, Y.; Zhang, X.; Dong, J.; Liu, D.; Pan, L.; et al. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 2021, 4, 1076–1083. [Google Scholar] [CrossRef]
- Li, Y.; Wen, H.; Wang, F. Analysis of the Evolution of Mangrove Landscape Patterns and Their Drivers in Hainan Island from 2000 to 2020. Sustainability 2023, 15, 759. [Google Scholar] [CrossRef]
- Liao, J.J.; Zhen, J.N.; Zhang, L.; Metternicht, G. Understanding Dynamics of Mangrove Forest on Protected Areas of Hainan Island, China: 30 Years of Evidence from Remote Sensing. Sustainability 2019, 11, 5356. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, N.; Li, Z.C.; Huang, C.H. Satellite derived coastal reclamation expansion in China since the 21st century. Glob. Ecol. Conserv. 2021, 30, e01797. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Krumme, U.; Andersen, T.J.; Jennerjahn, T.C. Decadal trends in mangrove and pond aquaculture cover on Hainan (China) since 1966: Mangrove loss, fragmentation and associated biogeochemical changes. Estuar. Coast. Shelf Sci. 2020, 233, 106531. [Google Scholar] [CrossRef]
- Fu, T.M.; Zhang, L.; Yuan, X.; Chen, B.W.; Yan, M. Spatio-temporal patterns and sustainable development of coastal aquaculture in Hainan Island, China: 30 Years of evidence from remote sensing. Ocean. Coast. Manag. 2021, 214, 12. [Google Scholar] [CrossRef]
- Jia, P.H.; Huang, W.D.; Zhang, Z.Y.; Cheng, J.X.; Xiao, Y.L. The Carbon Sink of Mangrove Ecological Restoration between 1988–2020 in Qinglan Bay, Hainan Island, China. Forests 2022, 13, 1547. [Google Scholar] [CrossRef]
- Zhu, B.; Liao, J.J.; Shen, G.Z. Combining time series and land cover data for analyzing spatio-temporal changes in mangrove forests: A case study of Qinglangang Nature Reserve, Hainan, China. Ecol. Indic. 2021, 131, 16. [Google Scholar] [CrossRef]
- Pham, H.N.; Dang, K.B.; Nguyen, T.V.; Tran, N.C.; Ngo, X.Q.; Nguyen, D.A.; Phan, T.T.H.; Nguyen, T.T.; Guo, W.; Ngo, H.H. A new deep learning approach based on bilateral semantic segmentation models for sustainable estuarine wetland ecosystem management. Sci. Total Environ. 2022, 838, 155826. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Mao, D.; Wang, Z.; Ren, C.; Zhu, Q.; Li, X.; Zhang, Y. Tracking long-term floodplain wetland changes: A case study in the China side of the Amur River Basin. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102185. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Tian, Y.; Jia, M.; Wang, Z.; Mao, D.; Du, B.; Wang, C. Monitoring Invasion Process of Spartina alterniflora by Seasonal Sentinel-2 Imagery and an Object-Based Random Forest Classification. Remote Sens. 2020, 12, 1383. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D.; Alley, R.B.; Velicogna, I.; Gasson, E.; Gomez, N.; Sadai, S.; Condron, A.; Gilford, D.M.; Ashe, E.L.; et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 2021, 593, 83–89. [Google Scholar] [CrossRef]
- Fant, C.; Gentile, L.E.; Herold, N.; Kunkle, H.; Kerrich, Z.; Neumann, J.; Martinich, J. Valuation of long-term coastal wetland changes in the U.S. Ocean. Coast. Manag. 2022, 226, 106248. [Google Scholar] [CrossRef]
- Visschers, L.L.B.; Santos, C.D.; Franco, A.M.A. Accelerated migration of mangroves indicate large-scale saltwater intrusion in Amazon coastal wetlands. Sci. Total Environ. 2022, 836, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Chu, L.X.; Oloo, F.; Chen, B.; Xie, M.M.; Blaschke, T. Assessing the Influence of Tourism-Driven Activities on Environmental Variables on Hainan Island, China. Remote Sens. 2020, 12, 2813. [Google Scholar] [CrossRef]
- Hagger, V.; Waltham, N.J.; Lovelock, C.E. Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality. Ecosyst. Serv. 2022, 55, 101423. [Google Scholar] [CrossRef]
- Iram, N.; Maher, D.T.; Lovelock, C.E.; Baker, T.; Cadier, C.; Adame, M.F. Climate change mitigation and improvement of water quality from the restoration of a subtropical coastal wetland. Ecol. Appl. 2022, 32, e2620. [Google Scholar] [CrossRef] [PubMed]
- Aljahdali, M.O.; Munawar, S.; Khan, W.R. Monitoring Mangrove Forest Degradation and Regeneration: Landsat Time Series Analysis of Moisture and Vegetation Indices at Rabigh Lagoon, Red Sea. Forests 2021, 12, 52. [Google Scholar] [CrossRef]
- Gilani, H.; Naz, H.I.; Arshad, M.; Nazim, K.; Akram, U.; Abrar, A.; Asif, M. Evaluating mangrove conservation and sustainability through spatiotemporal (1990-2020) mangrove cover change analysis in Pakistan. Estuar. Coast. Shelf Sci. 2021, 249, 16. [Google Scholar] [CrossRef]
- Hanggara, B.B.; Murdiyarso, D.; Ginting, Y.R.S.; Widha, Y.L.; Panjaitan, G.Y.; Lubis, A.A. Effects of diverse mangrove management practices on forest structure, carbon dynamics and sedimentation in North Sumatra, Indonesia. Estuar. Coast. Shelf Sci. 2021, 259, 107467. [Google Scholar] [CrossRef]
- Conner, W.; Whitmire, S.; Duberstein, J.; Stalter, R.; Baden, J. Changes within a South Carolina Coastal Wetland Forest in the Face of Rising Sea Level. Forests 2022, 13, 414. [Google Scholar] [CrossRef]
- Xiong, Y.; Jiang, Z.; Xin, K.; Liao, B.; Chen, Y.; Li, M.; Guo, H.; Xu, Y.; Zhai, X.; Zhang, C. Factors influencing mangrove forest recruitment in rehabilitated aquaculture ponds. Ecol. Eng. 2021, 168, 106272. [Google Scholar] [CrossRef]
- BORDE, A.B.; DIEFENDERFER, H.L.; CULLINAN, V.I.; ZIMMERMAN, S.A.; THOM, R.M. Ecohydrology of wetland plant communities along an estuarine to tidal river gradient. Ecoshpere 2020, 11, e03185. [Google Scholar] [CrossRef]
- Ren, J.; Chen, J.; Xu, C.; van de Koppel, J.; Thomsen, M.S.; Qiu, S.; Cheng, F.; Song, W.; Liu, Q.-X.; Xu, C.; et al. An invasive species erodes the performance of coastal wetland protected areas. Sci. Adv. 2021, 7, eabi8943. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Megías, C.; Rico, A. Biodiversity impacts by multiple anthropogenic stressors in Mediterranean coastal wetlands. Sci. Total Environ. 2022, 818, 151712. [Google Scholar] [CrossRef] [PubMed]
Index | Calculation Formula | Description |
---|---|---|
NDVI | NDVI = (Nir − Red)/(Nir + Red) | Detection of vegetation growth status, vegetation cover, and partial elimination of radiation errors. |
NDWI | NDWI = (Green − Nir)/(Green + reed) | Used to extract water body information from images with good effect. |
MNDWI | MNDWI = (Green − Swir1)/(Green + Swir2) | MNDWI is better than NDWI for revealing the microfeatures of water bodies and it can easily distinguish shadows from water bodies, solving the difficulty of eliminating shadows in water body extraction. |
CMRI | CMRI = NDVI − NDWI | CMRI improves the identification of mangrove and non-mangrove vegetation. |
Category I | Category II | Code | Description | Landsat Images | |
---|---|---|---|---|---|
Natural Wetland | Water | 11 | Natural water bodies, including rivers, lakes, and oceans. | ||
Mangrove | 12 | Mangrove forest. | |||
Tidal flat | 13 | 131 | Sandy beaches (sandy beaches also belong to tidal flats, but the spectral characteristics of sandy beaches are not consistent with other tidal flats, so they are listed separately). | ||
132 | Tidal flats, mainly bare wetlands in natural wetlands other than water bodies, mangroves, and sandy beaches. | ||||
Artificial wetland | Aquaculture pond | 21 | Aquaculture pond. | ||
Non-wetland landscape | Terrestrial vegetation | 31 | Terrestrial vegetation. | ||
Other | 32 | Other terrestrial landscapes. |
Index | Calculation Formula | Description |
---|---|---|
Landscape fragmentation index (C) | denotes the total number of patches in class i landscapes. denotes the total area of class i landscape. The larger C is, the higher the fragmentation of landscape distribution. | |
Aggregation index (AI) | refers to the number of adjacent patches in the landscape. The higher the value of AI, the higher the degree of aggregation. A larger value of AI means that the landscape consists of a few clustered large patches. A small value of AI means that the landscape consists of many small patches. |
Site | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|---|---|---|
DZG | Overall accuracy (%) | 91.1 | 90.7 | 90.9 | 91.8 | 92.2 | 93.4 | 94.3 |
Kappa coefficient | 0.85 | 0.84 | 0.86 | 0.89 | 0.90 | 0.92 | 0.91 | |
BMG | Overall accuracy (%) | 90.7 | 91.3 | 92.7 | 91.5 | 91.9 | 92.5 | 93.7 |
Kappa coefficient | 0.86 | 0.85 | 0.87 | 0.88 | 0.89 | 0.91 | 0.90 | |
BAG | Overall accuracy (%) | 90.0 | 91.8 | 92.9 | 90.1 | 90.2 | 93.5 | 94.4 |
Kappa coefficient | 0.89 | 0.87 | 0.88 | 0.90 | 0.92 | 0.94 | 0.95 | |
CHG | Overall accuracy (%) | 90.8 | 90.5 | 91.1 | 92.6 | 92.5 | 92.1 | 93.2 |
Kappa coefficient | 0.87 | 0.89 | 0.92 | 0.88 | 0.90 | 0.93 | 0.92 | |
DZW | Overall accuracy (%) | 91.2 | 92.5 | 90.7 | 90.9 | 91.1 | 94.2 | 95.3 |
Kappa coefficient | 0.88 | 0.86 | 0.84 | 0.89 | 0.90 | 0.91 | 0.93 | |
WKH | Overall accuracy (%) | 90.2 | 91.5 | 90.3 | 91.1 | 91.4 | 93.5 | 94.1 |
Kappa coefficient | 0.85 | 0.87 | 0.86 | 0.89 | 0.88 | 0.91 | 0.92 | |
DLG | Overall accuracy (%) | 90.1 | 90.5 | 91.3 | 91.7 | 92.2 | 91.3 | 93.4 |
Kappa coefficient | 0.87 | 0.88 | 0.86 | 0.85 | 0.88 | 0.92 | 0.91 | |
MLG | Overall accuracy (%) | 92.2 | 92.1 | 91.9 | 92.8 | 91.6 | 92.1 | 94.0 |
Kappa coefficient | 0.88 | 0.85 | 0.87 | 0.86 | 0.89 | 0.91 | 0.93 | |
CQH | Overall accuracy (%) | 90.8 | 90.6 | 91.1 | 90.8 | 91.2 | 94.6 | 95.4 |
Kappa coefficient | 0.88 | 0.85 | 0.87 | 0.86 | 0.90 | 0.92 | 0.94 |
Precipitation | Temperature | Water Quality | Aquiculture Pond | Nature Wetland | WRI | |
---|---|---|---|---|---|---|
Precipitation | 1.000 | 0.001 | 0.106 | 0.113 | −0.143 | −0.067 |
Temperature | 1.000 | 0.429 ** | 0.291 * | 0.012 | 0.086 | |
Water quality | 1.000 | 0.411 ** | 0.010 | 0.200 | ||
Aquiculture pond | 1.000 | −0.159 | 0.377 ** | |||
Nature wetland | 1.000 | −0.703 ** | ||||
WRI | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, D.; Chen, Y.; Zhao, Z. Spatial–Temporal Evolution Monitoring and Ecological Risk Assessment of Coastal Wetlands on Hainan Island, China. Remote Sens. 2023, 15, 1035. https://doi.org/10.3390/rs15041035
Chen H, Li D, Chen Y, Zhao Z. Spatial–Temporal Evolution Monitoring and Ecological Risk Assessment of Coastal Wetlands on Hainan Island, China. Remote Sensing. 2023; 15(4):1035. https://doi.org/10.3390/rs15041035
Chicago/Turabian StyleChen, Haiyan, Dalong Li, Yaning Chen, and Zhizhong Zhao. 2023. "Spatial–Temporal Evolution Monitoring and Ecological Risk Assessment of Coastal Wetlands on Hainan Island, China" Remote Sensing 15, no. 4: 1035. https://doi.org/10.3390/rs15041035
APA StyleChen, H., Li, D., Chen, Y., & Zhao, Z. (2023). Spatial–Temporal Evolution Monitoring and Ecological Risk Assessment of Coastal Wetlands on Hainan Island, China. Remote Sensing, 15(4), 1035. https://doi.org/10.3390/rs15041035