Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment and Data
2.2. The Method of Determining the BLH
3. Results
3.1. Spatial-Temporal Characteristics of Typical Haze Events within the BL in Different Months
3.1.1. Spatial–Temporal Characteristics of Temperature and Horizontal Wind within the BL during Typical Haze Events
3.1.2. Spatial—Temporal Characteristics of Relative Humidity within the BL during Typical Haze Events
3.2. Statistical Characteristics of Haze
3.2.1. Statistical Characteristics of BLH during Haze Events
3.2.2. Statistical Characteristics of Temperature within the BL during Haze Events
3.2.3. Statistical Characteristics of Relative Humidity within the BL during Haze Events
3.2.4. Statistical Characteristics of Wind within the BL during Haze Events
3.3. The Relationship between Haze BLH and the Atmospheric Environment
3.3.1. The Relationship between Haze BLH and AQI
3.3.2. The Relationship between Haze BLH and and
4. Discussion
5. Conclusions
- (1)
- The was generally lower than 1000 m and the ; moreover, the lower in December and January was distributed in the range of 200–600 m, while the higher in June and July was distributed in the range of 500–1100 m; meanwhile, the max appeared at 13:00–15:00.
- (2)
- When the was higher, the heat interaction was stronger, the turbulent motion of the atmosphere was more intense and the corresponding BLH was higher. Conversely, when the was lower, the heat interaction between ground and air quality was weaker; moreover, the atmospheric structure was more stable and the corresponding BLH was lower.
- (3)
- When the BLH rose, the gradually decreased, and the gradually increased with height; conversely, when the BLH decreased, the gradually increased; moreover, the larger the RH, the lower the BLH, and the more serious the air pollution.
- (4)
- Due to the relatively stable atmospheric structure with the low BLH, the average AQI, and , were large, the air quality was poor, and the air pollution was severe. However, when the BLH gradually became higher with time, the average AQI, and gradually decreased and the air quality gradually improved.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hua, W.; Wu, B. Atmospheric circulation anomaly over mid– and high– latitudes and its association with severe persistent haze events in Beijing. Atmos. Res. 2022, 277, 106315. [Google Scholar] [CrossRef]
- Qiu, Y.; Gai, P.X.; Yue, F.; Zhang, Y.Y.; He, P.Z.; Kang, H.; Yu, X.W.; Chen, J.B.; Xie, Z.Q. Potential factors impacting PM2.5-Hg during haze evolution revealed by mercury isotope: Emission sources and photochemical processes. Atmos. Res. 2022, 277, 106318. [Google Scholar] [CrossRef]
- Zhang, R.H.; Qiang, L.I.; Zhang, R.N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci. China Earth Sci. 2014, 57, 26–35. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.H.; Zheng, F.X.; Zhou, Y.; Guo, Y.; Feng, Z.; Li, C.; Zhang, Y.; Hakala, S.; Chan, T.; et al. Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed by aerosol–chemistry–radiation–boundary layer interaction. Atmos. Chem. Phys. 2021, 21, 12173–12187. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting trends of PM2:5 and surface ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Huang, R.-J.; Zhang, R.; Tie, X.; Li, G.; Cao, J.; Zhou, W.; Shi, Z.; Han, Y.; Gu, Z.; et al. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc. Natl. Acad. Sci. USA 2019, 116, 8657–8666. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, X.; Qu, Y.; Wang, J.; An, J.; Zhang, Y.; Zhang, F. Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmos. Res. 2015, 155, 192–203. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, J.; Xin, J.; Zhang, W.; de Arellano, J.V.-G.; Wang, S.; Zhao, D.; Dai, L.; Ma, Y.X.; Wu, X.; et al. The Stove, Dome, and Umbrella Effects of Atmospheric Aerosol on the Development of the Planetary Boundary Layer in Hazy Regions. Geophys. Res. Lett. 2020, 47, e2020GL087373. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Xie, M.; Zhuang, B.; Li, S.; Han, Y.; Chen, P. Impacts of aerosol-radiation feedback on local air quality during a severe haze episode in Nanjing megacity, eastern China. Tellus B 2017, 69, 1339548. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Carslaw, K.S.; Kulmala, M.; Kerminen, V.M.; Sihto, S.L.; Riipinen, I.; Merikanto, J.; Mann, G.W.; Chipperfield, M.P.; Wiedensohler, A.; et al. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett. 2008, 35, L06808. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Rey, J.; Kwong, C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet 2017, 389, 718–726. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in megacities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Slater, J.; Coe, H.; McFiggans, G.; Tonttila, J.; Romakkaniemi, S. The effect of BC on aerosol–boundary layer feedback: Potential implications for urban pollution episodes. Atmos. Chem. Phys. 2022, 22, 2937–2953. [Google Scholar] [CrossRef]
- Liu, C.; Hua, C.; Zhang, H.; Zhang, B.; Wang, G.; Zhu, W.; Xu, R. A severe fog-haze episode in Beijing-Tianjin-Hebei region: Characteristics, sources and impacts of boundary layer structure. Atmos. Pollut. Res. 2019, 10, 1190–1202. [Google Scholar] [CrossRef]
- Kerr, G.H.; Waugh, D.W. Connections between summer air pollution and stagnation. Environ. Res. Lett. 2018, 13, 084001. [Google Scholar] [CrossRef]
- Liu, Q.; Jia, X.; Quan, J.; Li, J.; Li, X.; Wu, Y.; Chen, D.; Wang, Z.; Liu, Y. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events. Sci. Rep.-UK 2018, 8, 6095. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Song, Y.; Cai, X.; Zhang, H. Study on the synoptic flow patterns and boundary layer process of the severe haze events over the North China Plain in January 2013. Atmos. Environ. 2016, 124, 129–145. [Google Scholar] [CrossRef]
- Singh, N.; Solanki, R.; Ojha, N.; Janssen, R.H.H.; Pozzer, A.; Dhaka, S.K. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations. Atmos. Chem. Phys. 2016, 16, 10559–10572. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, Y.; Lian, C.; Yan, C.; Feng, Z.; Zheng, F.; Fan, X.; Chen, Y.; Wang, W.; Chu, B.; et al. The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: The possible contribution of traffic-related emissions. Atmos. Chem. Phys. 2020, 20, 13023–13040. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Zhou, M.; Cheng, Z.; Li, Q.; Cao, X.; Zhang, J. Observational analyses of dramatic developments of a severe air pollution event in the Beijing area. Atmos. Chem. Phys. 2018, 18, 3919–3935. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yao, L.; Wang, L.; Liu, Z.; Ji, D.; Tang, G.; Zhang, J.; Sun, Y.; Hu, B.; Xin, J. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2014, 57, 14–25. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, X.; Wang, Y. Comparative analysis on meteorological condition for persistent haze cases in summer and winter in Beijing. Environ. Sci. 2014, 35, 2031–2044. (In Chinese). Available online: https://www.hjkx.ac.cn/hjkx/ch/reader/view_abstract.aspx?file_no=20140601&flag=1 (accessed on 20 January 2022).
- Zhao, X.J.; Zhao, P.S.; Xu, J.; Meng, W.; Pu, W.W.; Dong, F.; He, D.; Shi, Q.F. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wang, Y.; Tan, T.; Zhu, Y.; Li, M.; Shang, D.; Wang, H.; Lu, K.; Guo, S.; Zeng, L.; et al. Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain. Environ. Sci. Technol. Lett. 2018, 5, 160–166. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. Available online: https://www.science.org/doi/10.1126/sciadv.1601530 (accessed on 20 January 2022). [CrossRef] [Green Version]
- Tang, G.; Zhang, J.; Zhu, X.; Song, T.; Münkel, C.; Hu, B.; Schäfer, K.; Liu, Z.; Zhang, J.; Wang, L.; et al. Mining layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 2016, 16, 2459–2475. [Google Scholar] [CrossRef] [Green Version]
- Ding, A.J.; Huang, X.; Nie, W.; Sun, J.N.; Kerminen, V.M.; Petäjä, T.; Su, H.; Cheng, Y.F.; Yang, X.Q.; Wang, M.H.; et al. Enhanced haze pollution by black carbon in megacities in China. Geophys. Res. Lett. 2016, 43, 2873–2879. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Fu, P.; Jiang, Q.; Yang, T.; Li, J.; Ge, X. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ. 2013, 77, 927–934. [Google Scholar] [CrossRef]
- Kneifel, S.; Redl, S.; Orlandi, E.; Lohnert, U.; Cadeddu, M.P.; Turner, D.D.; Chen, M.-T. Absorption properties of supercooled liquid water between 31 and 225GHz: Evaluation of absorption models using ground-based observations. J. Appl. Meteorol. Climatol. 2014, 53, 1028–1045. [Google Scholar] [CrossRef]
- Kulie, M.S.; Bennartz, R. Utilizing space-borne radars to retrieve dry snowfall. J. Appl. Meteorol. Climatol. 2009, 48, 2564–2580. [Google Scholar] [CrossRef]
- Hocke, K.; Kampfer, N.; Ruffieux, D.; Froidevaux, L.; Parrish, A.; Boyd, I.; von Clarmann, T.; Steck, T.; Timofeyev, Y.M.; Polyakov, A.V.; et al. Comparison and synergy of stratospheric ozone measurements by satellite limb sounders and the ground-based microwave radiometer SOMORA. Atmos. Chem. Phys. 2007, 7, 4117–4131. Available online: https://acp.copernicus.org/articles/7/4117/2007/ (accessed on 20 January 2022). [CrossRef] [Green Version]
- Muller, S.C.; Kampfer, N.; Feist, D.G.; Haefele, A.; Milz, M.; Sitnikov, N.; Schiller, C.; Kiemle, C.; Urban, J. Validation of stratospheric water vapour measurements from the airborne microwave radiometer AMSOS. Atmos. Chem. Phys. 2008, 8, 3169–3183. [Google Scholar] [CrossRef] [Green Version]
- John, V.O.; Buehler, S.A. Comparison of microwave satellite humidity data and radiosonde profiles: A survey of European stations. Atmos. Chem. Phys. 2005, 5, 1843–1853. [Google Scholar] [CrossRef] [Green Version]
- Ming, H.; Wei, M.; Wang, M.; Gao, L.; Chen, L.; Wang, X. Analysis of fog at Xianyang Airport based on multi-source ground-based detection data. Atmos. Res. 2019, 220, 34–45. [Google Scholar] [CrossRef]
- Molod, A.; Salmun, H.; Dempsey, M. Estimating planetary boundary layer heights from NOAA profiler network wind profiler data. J. Atmos. Ocean. Technol. 2015, 32, 1545–1561. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Liu, B.; Guo, J.; Gong, W.; Shi, Y.; Jin, S. Boundary Layer Height as Estimated from Radar Wind Profilers in Four Cities in China: Relative Contributions from Aerosols and Surface Features. Remote Sens. 2020, 12, 1657. [Google Scholar] [CrossRef]
- Pichugina, Y.L.; Banta, R.M. Stable boundary layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteorol. Climatol. 2010, 49, 20–35. [Google Scholar] [CrossRef]
- Pichugina, Y.L.; Tucker, S.C.; Banta, R.M.; Brewer, W.A.; Kelley, N.D.; Jonkman, B.J.; Newsom, R.K. Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Ocean. Technol. 2008, 25, 1307–1327. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Evaluating formulations of stable boundary layer height. J. Appl. Meteorol. 2004, 43, 1736–1749. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Z.; Li, D.; Li, Y.; Zhang, N.; Zhao, X.; Chen, J. On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci. Model Dev. 2014, 7, 2599–2611. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tian, Y.; Nei, N.; Ho, S.-P.; Li, J. Rising Planetary Boundary Layer Height over the Sahara Desert and Arabian Peninsula in a Warming Climate. J. Clim. 2021, 34, 4043–4068. [Google Scholar] [CrossRef]
Parameter Name | Parameter | Parameter Name | High-Mode | Low-Mode |
---|---|---|---|---|
Radar wavelength | 227 mm | Pulse width | 0.66 μs | 0.33 μs |
Beam width | 8° | Height resolution | 120 | 60 |
Beam number | 5 | FFT points | 512 | 256 |
Antenna gain | 25 dB | Receiver band width | 1.5 MHz | 3.0 MHz |
Feeder loss | 2 dB | Min detection altitude | 600 | 60 |
Peak transmitted power | 2.36 KW | Number of coherent accumulations | 64 | 100 |
Noise coefficient | 2 dB |
Year | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 27 | 28 | 25 | 23 | 13 | 10 | 16 | 23 | 18 | 14 | 24 | 30 |
2017 | 29 | 26 | 21 | 13 | 10 | 13 | 8 | 11 | 13 | 13 | 25 | 31 |
2018 | 26 | 26 | 25 | 12 | 11 | 9 | 11 | 14 | 8 | 16 | 23 | 29 |
2019 | 31 | 28 | 18 | 16 | 10 | 9 | 4 | 8 | 16 | 18 | 23 | 26 |
2020 | 26 | 24 | 19 | 20 | 8 | 9 | 13 | 5 | 11 | 10 | 18 | 22 |
2021 | 23 | 19 | 20 | 12 | 8 | 5 | 5 | 9 | 5 | 12 | 21 | 25 |
Sum | 162 | 151 | 128 | 96 | 60 | 55 | 57 | 70 | 71 | 83 | 134 | 163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, H.; Wang, M.; Gao, L.; Qian, Y.; Gao, M.; Chehri, A. Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data. Remote Sens. 2023, 15, 641. https://doi.org/10.3390/rs15030641
Ming H, Wang M, Gao L, Qian Y, Gao M, Chehri A. Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data. Remote Sensing. 2023; 15(3):641. https://doi.org/10.3390/rs15030641
Chicago/Turabian StyleMing, Hu, Minzhong Wang, Lianhui Gao, Yijia Qian, Mingliang Gao, and Abdellah Chehri. 2023. "Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data" Remote Sensing 15, no. 3: 641. https://doi.org/10.3390/rs15030641
APA StyleMing, H., Wang, M., Gao, L., Qian, Y., Gao, M., & Chehri, A. (2023). Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data. Remote Sensing, 15(3), 641. https://doi.org/10.3390/rs15030641