A Review of the Far-Reaching Usage of Low-Light Nighttime Data
Abstract
:1. Introduction
2. Data and Materials
2.1. Database
2.2. Satellite-Based Low-Light Observations
2.3. Categories and Tagging
3. Categories
3.1. Data and Performance
3.2. Applications
3.2.1. Urban and Land Use
3.2.2. Human Activity
3.2.3. Atmosphere
3.2.4. Civil Engineering and Structure
3.2.5. Lights
3.2.6. Biology
3.2.7. Oceans and Freshwater
3.2.8. Natural Resources
3.3. Miscellaneous
3.4. Other Tags
4. Comparisons
4.1. Light Type: Artificial vs. Natural
4.2. Moonlight
4.3. Earth System Spheres
5. Discussion
5.1. The Evolution of Low-Light Science
5.2. Possible Future Improvements to Low-Light Visible Observations
5.3. Toward a Geostationary-Based Low-Light Visible Measurement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.M.; Smith, L.C. Advances in Using Multitemporal Night-Time Lights Satellite Imagery to Detect, Estimate, and Monitor Socioeconomic Dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Cho, Y.; Ryu, S.-H.; Lee, B.R.; Kim, K.H.; Lee, E.; Choi, J. Effects of Artificial Light at Night on Human Health: A Literature Review of Observational and Experimental Studies Applied to Exposure Assessment. Chronobiol. Int. 2015, 32, 1294–1310. [Google Scholar] [CrossRef] [PubMed]
- Witmer, F.D.W. Remote Sensing of Violent Conflict: Eyes from Above. Int. J. Remote Sens. 2015, 36, 2326–2352. [Google Scholar] [CrossRef]
- Hu, K.; Qi, K.; Guan, Q.; Wu, C.; Yu, J.; Qing, Y.; Zheng, J.; Wu, H.; Li, X. A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016. Remote Sens. 2017, 9, 802. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y. Knowledge Map Analysis on the Application of Nighttime Light Data in Chinese Academic Research. Int. J. Sci. 2020, 7, 18. [Google Scholar]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote Sensing of Night Lights: A Review and an Outlook for the Future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Pack, D.W.; Coffman, C.M.; Santiago, J.R. A Year in Space for the CUbesat MULtispectral Observing System: CUMULOS. In Proceedings of the Small Satellite Conference, Logan, UT, USA, 8 August 2019; p. 19. [Google Scholar]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Jiao, W.; Long, T.; Liu, H.; Bi, L.; Jiang, W.; Portnov, B.A.; Liu, M. A Relative Radiation Normalization Method of ISS Nighttime Light Images Based on Pseudo Invariant Features. Remote Sens. 2020, 12, 3349. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System. Photogram. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble Nighttime Lights Product Suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Chen, H.; Sun, C.; Xiong, X.; Sarid, G.; Sun, J. SNPP VIIRS Day Night Band: Ten Years of On-Orbit Calibration and Performance. Remote Sens. 2021, 13, 4179. [Google Scholar] [CrossRef]
- Dong, K.; Li, X.; Cao, H.; Tong, Z. Intercalibration Between Night-Time DMSP/OLS Radiance Calibrated Images and NPP/VIIRS Images Using Stable Pixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8838–8848. [Google Scholar] [CrossRef]
- Xiong, X.; Butler, J.J. MODIS and VIIRS Calibration History and Future Outlook. Remote Sens. 2020, 12, 2523. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS Data Are Superior to DMSP for Mapping Nighttime Lights. APAN Proc. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.; Olivia, S.; Boe-Gibson, G.; Li, C. Which Night Lights Data Should We Use in Economics, and Where? J. Dev. Econ. 2021, 149, 102602. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, P.; Lv, J.; Xu, N.; Hu, X. Radiometric Calibration Evaluation for RSBs of Suomi-NPP/VIIRS and Aqua/MODIS Based on the 2015 Dunhuang Chinese Radiometric Calibration Site in Situ Measurements. Int. J. Remote Sens. 2017, 38, 5640–5656. [Google Scholar] [CrossRef] [Green Version]
- Zhai, W.; Han, B.; Cheng, C. Evaluation of Luojia 1-01 Nighttime Light Imagery for Built-Up Urban Area Extraction: A Case Study of 16 Cities in China. IEEE Geosci. Remote Sens. Lett. 2019, 7, 1802–1806. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, X.; Geng, X.; Twedt, K. Stray-Light Correction and Prediction for Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Day-Night Band. J. Appl. Remote Sens. 2019, 13, 1. [Google Scholar] [CrossRef]
- Qiu, S.; Shao, X.; Cao, C.Y.; Uprety, S.; Wang, W.H. Assessment of Straylight Correction Performance for the VIIRS Day/Night Band Using Dome-C and Greenland under Lunar Illumination. Int. J. Remote Sens. 2017, 38, 5880–5898. [Google Scholar] [CrossRef]
- Cao, H.; Li, X.; Tong, Z. Impact of Image Saturation on Radiometric Intercalibration of DMSP/OLS Nighttime Light Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7948–7960. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Cao, X.; Chen, X.; Cui, X.; Gan, L. Correcting the Saturation Effect in DMSP/OLS Stable Nighttime Light Products Based on Radiance-Calibrated Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ch, R.; Martin, D.A.; Vargas, J.F. Measuring the Size and Growth of Cities Using Nighttime Light. J. Urban Econ. 2021, 125, 103254. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, X.; Wu, Z.; Dai, Z.; Yin, J.; Zhang, C. An Improved Method for Urban Built-Up Area Extraction Supported by Multi-Source Data. Sustainability 2021, 13, 5042. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between Satellite Observed Visible-near Infrared Emissions, Population, Economic Activity and Electric Power Consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Aslan, N.; Koc-San, D. Spatiotemporal land use change analysis and future urban growth simulation using remote sensing: A case study of antalya. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, XLIII-B3-2020, 657–662. [Google Scholar] [CrossRef]
- Tan, M. Urban Growth and Rural Transition in China Based on DMSP/OLS Nighttime Light Data. Sustainability 2015, 7, 8768–8781. [Google Scholar] [CrossRef] [Green Version]
- Román, M.O.; Stokes, E.C. Holidays in Lights: Tracking Cultural Patterns in Demand for Energy Services: Tracking cultural patterns in demand for energy services. Earth’s Future 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Addison, D.; Stewart, B. Nighttime Lights Revisited: The Use of Nighttime Lights Data as a Proxy for Economic Variables; The World Bank Group: Washington, DC, USA, 2015; p. 30. Available online: https://ssrn.com/abstract=2691791 (accessed on 16 January 2023).
- Pan, G.; Xu, Y.; Ma, J. The Potential of CO2 Satellite Monitoring for Climate Governance: A Review. J. Environ. Manag. 2021, 277, 111423. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Perwitasari, S.; Xu, S.; Hozumi, Y.; Nakamura, T.; Sakanoi, T.; Saito, A.; Miller, S.D.; Straka, W.; Rong, P. Preliminary Dual-Satellite Observations of Atmospheric Gravity Waves in Airglow. Atmosphere 2019, 10, 650. [Google Scholar] [CrossRef]
- Zhang, J.; Miller, S.D.; Reid, J.S.; Hyer, E.J.; McHardy, T.M. From OLS to VIIRS, an Overview of Nighttime Satellite Aerosol Retrievals Using Artificial Light Sources. In Proceedings of the 2015 AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Hawkins, J.D.; Solbrig, J.E.; Miller, S.D.; Surratt, M.; Lee, T.F.; Bankert, R.L.; Richardson, K. Tropical Cyclone Characterization via Nocturnal Low-Light Visible Illumination. Bull. Am. Meteorol. Soc. 2017, 98, 2351–2365. [Google Scholar] [CrossRef] [Green Version]
- Bertinelli, L.; Strobl, E. Quantifying the Local Economic Growth Impact of Hurricane Strikes: An Analysis from Outer Space for the Caribbean. J. Appl. Meteorol. Climatol. 2013, 52, 1688–1697. [Google Scholar] [CrossRef]
- Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A. Evaluating the Effects of Urbanization Evolution on Air Temperature Trends Using Nightlight Satellite Data. Atmosphere 2019, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Román, M.O.; Sun, Q.; Molthan, A.L.; Schultz, L.A.; Kalb, V.L. Monitoring disaster-related power outages using NASA black marble nighttime light product. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII–3, 1853–1856. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Milesi, C.; Dietz, J.B.; Tuttle, B.T.; Sutton, P.C.; Nemani, R.; Vogelmann, J.E. U.S. Constructed Area Approaches the Size of Ohio. Eos Trans. AGU 2004, 85, 233. [Google Scholar] [CrossRef] [Green Version]
- Gaston, K.J.; Ackermann, S.; Bennie, J.; Cox, D.T.C.; Phillips, B.B.; de Miguel, A.S.; Sanders, D. Pervasiveness of Biological Impacts of Artificial Light at Night. Integr. Comp. Biol. 2021, 61, 1098–1110. [Google Scholar] [CrossRef]
- Hyde, E.; Frank, S.; Barentine, J.C.; Kuechly, H.; Kyba, C.C.M. Testing for Changes in Light Emissions from Certified International Dark Sky Places. Int. J. Sustain. Light. 2019, 21, 11–19. [Google Scholar] [CrossRef]
- Beatty, T.G. The Detectability of Nightside City Lights on Exoplanets. Mon. Not. R. Astron. Soc. 2022, 513, 2652–2662. [Google Scholar] [CrossRef]
- Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M. Temporal Changes in Artificial Light Exposure of Marine Turtle Nesting Areas. Glob. Chang. Biol. 2014, 20, 2437–2449. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Cruz, S.A.; Smolinsky, J.A.; Buler, J.J. Light Pollution Is Greatest within Migration Passage Areas for Nocturnally-Migrating Birds around the World. Sci. Rep. 2018, 8, 3261. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, J.; Le Viol, I.; Azam, C.; Valet, N.; Julien, J.-F.; Bas, Y.; Lemarchand, C.; de Miguel, A.S.; Kerbiriou, C. Accounting for Artificial Light Impact on Bat Activity for a Biodiversity-Friendly Urban Planning. Landsc. Urban Plan. 2019, 183, 12–25. [Google Scholar] [CrossRef]
- Rybnikova, N.A.; Haim, A.; Portnov, B.A. Artificial Light at Night (ALAN) and Breast Cancer Incidence Worldwide: A Revisit of Earlier Findings with Analysis of Current Trends. Chronobiol. Int. 2015, 32, 757–773. [Google Scholar] [CrossRef]
- Bustamante-Calabria, M.; de Miguel, A.S.; Martín-Ruiz, S.; Ortiz, J.-L.; Vílchez, J.M.; Pelegrina, A.; García, A.; Zamorano, J.; Bennie, J.; Gaston, K.J. Effects of the COVID-19 Lockdown on Urban Light Emissions: Ground and Satellite Comparison. Remote Sens. 2021, 13, 258. [Google Scholar] [CrossRef]
- Elvidge, C.; Zhizhin, M.; Baugh, K.; Hsu, F.-C. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef] [Green Version]
- Lebona, B.; Kleynhans, W.; Celik, T.; Mdakane, L. Ship Detection Using VIIRS Sensor Specific Data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1245–1247. [Google Scholar]
- Miller, S.D.; Haddock, S.H.D.; Straka, W.C.; Seaman, C.J.; Combs, C.L.; Wang, M.; Shi, W.; Nam, S. Honing in on Bioluminescent Milky Seas from Space. Sci. Rep. 2021, 11, 15443. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.H.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D. Satellite Remote Sensing of Active Fires: History and Current Status, Applications and Future Requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Faruolo, M.; Caseiro, A.; Lacava, T.; Kaiser, J.W. Gas Flaring: A Review Focused on Its Analysis from Space. IEEE Geosci. Remote Sens. Mag. 2020, 9, 258–281. [Google Scholar] [CrossRef]
- Pritchard, S.B. The Trouble with Darkness: NASA’s Suomi Satellite Images of Earth at Night. Environ. Hist. 2017, 22, 312–330. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS Night-Time Lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.K.; Mills, S.; Hauss, B.I.; Miller, S.D. Improved VIIRS Day/Night Band Imagery with Near-Constant Contrast. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6964–6971. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping Impervious Surface Distribution with Integration of SNNP VIIRS-DNB and MODIS NDVI Data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef] [Green Version]
- Xia, N.; Li, M.; Cheng, L. Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia. Land 2021, 10, 185. [Google Scholar] [CrossRef]
- Dou, Y.; Liu, Z.; He, C.; Yue, H. Urban Land Extraction Using VIIRS Nighttime Light Data: An Evaluation of Three Popular Methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Barentine, J.C.; Walker, C.E.; Kocifaj, M.; Kundracik, F.; Juan, A.; Kanemoto, J.; Monrad, C.K. Skyglow Changes over Tucson, Arizona, Resulting from a Municipal LED Street Lighting Conversion. J. Quant. Spectrosc. Radiat. Transf. 2018, 212, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.; Garz, S.; Kuechly, H.; de Miguel, A.; Zamorano, J.; Fischer, J.; Hölker, F. High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sens. 2014, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.; Weiss, S.; Liang, C. VIIRS Day/Night Band (DNB) Stray Light Characterization and Correction. In Proceedings of the Proc. SPIE, Earth Observing Systems XVIII, San Diego, CA, USA, 23 September 2013; Butler, J.J., Xiong, X., Gu, X., Eds.; Volume 8866, p. 88661P. [Google Scholar] [CrossRef]
- Lee, S.; Cao, C. Soumi NPP VIIRS Day/Night Band Stray Light Characterization and Correction Using Calibration View Data. Remote Sens. 2016, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.; Miller, S. VIIRS Day/Night Band—Correcting Striping and Nonuniformity over a Very Large Dynamic Range. J. Imaging 2016, 2, 9. [Google Scholar] [CrossRef]
Data and Performance | Applications | Misc. |
---|---|---|
Data Products and Display | Atmosphere | Commentary |
Performance | Biology | Future Satellites |
Civil Engineering and Structure | Introduction | |
Human Activities | Overview | |
Lights | ||
Natural Resources | ||
Oceans and Freshwater | ||
Urban and Land Use |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Combs, C.L.; Miller, S.D. A Review of the Far-Reaching Usage of Low-Light Nighttime Data. Remote Sens. 2023, 15, 623. https://doi.org/10.3390/rs15030623
Combs CL, Miller SD. A Review of the Far-Reaching Usage of Low-Light Nighttime Data. Remote Sensing. 2023; 15(3):623. https://doi.org/10.3390/rs15030623
Chicago/Turabian StyleCombs, Cynthia L., and Steven D. Miller. 2023. "A Review of the Far-Reaching Usage of Low-Light Nighttime Data" Remote Sensing 15, no. 3: 623. https://doi.org/10.3390/rs15030623
APA StyleCombs, C. L., & Miller, S. D. (2023). A Review of the Far-Reaching Usage of Low-Light Nighttime Data. Remote Sensing, 15(3), 623. https://doi.org/10.3390/rs15030623