All-Weather Monitoring of Ulva prolifera in the Yellow Sea Based on Sentinel-1, Sentinel-3, and NPP Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Remote Sensing Data Sources and Preprocessing
2.3. Backscattering Coefficient Calculation
3. Results
3.1. Characteristics of Sentinel-1 C Band SAR Signal of U. prolifera
3.2. Distribution Range of U. prolifera
3.3. Remote Sensing Analysis of Migration Path of U. prolifera
4. Discussion
5. Conclusions
- By combining different entry times and different types of remote sensing satellites, the time resolution of a U. prolifera remote sensing monitoring system can be expanded, and more abundant monitoring information about U. prolifera can be obtained;
- The accuracy of dividing the distribution of U. prolifera according to the backscattering coefficient threshold is ideal. Combined with the ocean current, sea surface wind, and other ocean parameters, the future development direction of U. prolifera can be predicted using the single-day migration trajectory of U. prolifera.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.Y.; Keesing, J.K.; He, P.M.; Wang, Z.L.; Shi, Y.J.; Wang, Y.J. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Han, W.; Chen, L.P.; Zhang, J.H.; Tian, X.L.; Hua, L.; He, Q.; Huo, Y.Z.; Yu, K.F.; Shi, D.J.; Ma, J.H.; et al. Seasonal variation of dominant free-floating and attached Ulva species in Rudong coastal area, China. Harmful Algae 2013, 28, 46–54. [Google Scholar] [CrossRef]
- Liu, J.L.; Xia, J.; Zhuang, M.M.; Zhang, J.H.; Yu, K.F.; Zhao, S.; Sun, Y.Q.; Tong, Y.C.; Xia, L.H.; Qin, Y.T.; et al. Controlling the source of green tides in the Yellow Sea: NaClO treatment of Ulva attached on Pyropia aquaculture rafts. Aquaculture 2021, 535, 8. [Google Scholar] [CrossRef]
- Cui, J.J.; Shi, J.T.; Zhang, J.H.; Wang, L.T.; Fan, S.Y.; Xu, Z.Y.; Huo, Y.Z.; Zhou, Q.Y.; Lu, Y.W.; He, P.M. Rapid expansion of Ulva blooms in the Yellow Sea, China through sexual reproduction and vegetative growth. Mar. Pollut. Bull. 2018, 130, 223–228. [Google Scholar] [CrossRef]
- Liu, X.Q.; Li, Y.; Wang, Z.L.; Zhang, Q.C.; Cai, X.Q. Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China. Estuar. Coast. Shelf Sci. 2015, 163, 17–22. [Google Scholar] [CrossRef]
- Bao, M.; Guan, W.B.; Yang, Y.; Cao, Z.Y.; Chen, Q. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012. Estuar. Coast. Shelf Sci. 2015, 163, 9–16. [Google Scholar] [CrossRef]
- Huang, J.; Wang, B.; Wang, X.; Huang, F.; Lu, W.; Jing, T. The spring Yellow Sea fog: Synoptic and air-sea characteristics associated with different airflow paths. Acta Oceanol. Sin. 2018, 37, 20–29. [Google Scholar] [CrossRef]
- Wu, X.; Li, S. Automatic sea fog detection over Chinese adjacent oceans using Terra/MODIS data. Int. J. Remote Sens. 2014, 35, 7430–7457. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Q.; Li, Y.; Liu, S.; Wang, Z.; Zhu, L.; Wang, Z. An overview of satellite remote sensing technology used in China’s environmental protection. Earth Sci. Inform. 2017, 10, 137–148. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, B.; Yu, D.; Fan, Y.; An, D.; Pan, S. Monitoring the Spatio-Temporal Distribution of Ulva prolifera in the Yellow Sea (2020–2022) Based on Satellite Remote Sensing. Remote Sens. 2023, 15, 157. [Google Scholar] [CrossRef]
- Liu, H.; Fan, W.; Xu, Y.; Lin, W. Research Progress in Forest Information Extraction Based on Multi—Source Data Collaboration Operation. World For. Res. 2020, 33, 33–37. [Google Scholar]
- Gao, W.D.; Zheng, C.; Liu, X.H.; Lu, Y.D.; Chen, Y.F.; Wei, Y.; Ma, Y.D. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 14. [Google Scholar] [CrossRef]
- Kong, R.; Zhang, Z.; Yu, Z.; Huang, R.; Zhang, Y.; Chen, X.; Xu, C.-Y. Increasing sensitivity of dryland water use efficiency to soil water content due to rising atmospheric CO2. Sci. Total Environ. 2023, 905, 167087. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Zhang, Z.; Zhang, Y.; Wang, Y.; Peng, Z.; Chen, X.; Xu, C.-Y. Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening. Remote Sens. 2023, 15, 3104. [Google Scholar] [CrossRef]
- Tian, J.; Wang, H.; Zhang, Z.; Fu, Y.; Zhao, T.; Tao, H. Unraveling the Connection between Vegetation Greening and Ter-restrial Water Storage Decline in the Arid and Semi-Arid Regions of Northwest China. J. Hydrol. Reg. Stud. 2023, 49, 101509. [Google Scholar] [CrossRef]
- Qiu, R.A.; Li, X.; Han, G.; Xiao, J.F.; Ma, X.; Gong, W. Monitoring drought impacts on crop productivity of the US Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agric. For. Meteorol. 2022, 323, 13. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Li, Q.; Cao, Z.J.; Liu, N.Y. Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8983–8997. [Google Scholar] [CrossRef]
- Liang, J.Y.; Liu, D.S. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS-J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Jiang, L.L.; Zhao, D.Z.; Wang, L. Backscattering properties of marine phytoplankton Prorocentrum micans. Int. J. Remote Sens. 2014, 35, 4275–4286. [Google Scholar] [CrossRef]
- Hu, L.B.; Zeng, K.; Hu, C.M.; He, M.X. On the remote estimation of Ulva prolifera areal coverage and biomass. Remote Sens. Environ. 2019, 223, 194–207. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.A.M. To what extent can Ulva and Sargassum be detected and separated in satellite imagery? Harmful Algae 2021, 103, 11. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Wang, M.H.; Hu, C.M. Uncertainties in MODIS-Derived Ulva Prolifera Amounts in the Yellow Sea: A Systematic Evaluation Using Sentinel-2/MSI Observations. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5. [Google Scholar] [CrossRef]
- Wang, M.Q.; Hu, C.M. On the continuity of quantifying floating algae of the Central West Atlantic between MODIS and VIIRS. Int. J. Remote Sens. 2018, 39, 3852–3869. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Fang, Z.X.; Wu, Y.C.; Liang, J.F.; Song, X. Multi-Source Evidence Data Fusion Approach to Detect Daily Distribution and Coverage of Ulva Prolifera in the Yellow Sea, China. IEEE Access 2019, 7, 115214–115228. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Gai, Y.Y. Ulva prolifera Monitoring study in the Yellow Sea from Multi-Temporal Remote Sensing Images. In Proceedings of the 2nd International Conference on Renewable Energy and Environmental Technology (REET), Dalian, China, 19–20 August 2014; pp. 1201–1206. [Google Scholar]
- Hu, C.M.; Li, D.Q.; Chen, C.S.; Ge, J.Z.; Muller-Karger, F.E.; Liu, J.P.; Yu, F.; He, M.X. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res.-Oceans 2010, 115, 8. [Google Scholar] [CrossRef]
- Le, C.F.; Hu, C.M.; English, D.; Cannizzaro, J.; Chen, Z.G.; Feng, L.; Boler, R.; Kovach, C. Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations. Prog. Oceanogr. 2013, 109, 90–103. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.H.; Hu, C.M.; Holt, B. On the capacity of Sentinel-1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sens. Environ. 2022, 280, 16. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, L.; Li, X.F. A Deep Learning Model for Green Algae Detection on SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 14. [Google Scholar] [CrossRef]
- Wang, S.A.; Zhang, F.L.; Shao, Y.; Tian, W.; Gong, H.Z. Microwave Remote Sensing for Marine Monitoring: An Example of Enteromorpha Prolifera Bloom Monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 June 2010; pp. 4530–4533. [Google Scholar]
- Liu, X.Q.; Wang, Z.L.; Zhang, X.L. A review of the green tides in the Yellow Sea, China. Mar. Environ. Res. 2016, 119, 189–196. [Google Scholar] [CrossRef]
- Zhang, S.P.; Xie, S.P.; Liu, Q.Y.; Yang, Y.Q.; Wang, X.G.; Ren, Z.P. Seasonal Variations of Yellow Sea Fog: Observations and Mechanisms. J. Clim. 2009, 22, 6758–6772. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.Q.; Gorelick, N.; Reiche, J. Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Adamo, M.; Matta, E.; Bresciani, M.; De Carolis, G.; Vaiciute, D.; Giardino, C.; Pasquariello, G. On the synergistic use of SAR and optical imagery to monitor cyanobacteria blooms: The Curonian Lagoon case study. Eur. J. Remote Sens. 2013, 46, 789–805. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 17. [Google Scholar] [CrossRef]
- Syrris, V.; Corbane, C.; Pesaresi, M.; Soille, P. Mosaicking Copernicus Sentinel-1 Data at Global Scale. IEEE Trans. Big Data 2020, 6, 547–557. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Budzynska, M.; Gurdak, R.; Musial, J.; Malinska, A.; Gatkowska, M.; Bartold, M. Application of Sentinel-1 VH and VV and Sentinel-2 for soil moisture studies. In Proceedings of the Conference on Active and Passive Microwave Remote Sensing for Environmental Monitoring, Warsaw, Poland, 12–14 September 2017. [Google Scholar]
- Wakabayashi, H.; Tonooka, H. Monitoring Ice Covering Lake Saroma by Using Sentinel-1 C-Band Sar Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3047–3050. [Google Scholar]
- Wu, H.L.; Liu, Y.M.; Beardall, J.; Zhong, Z.H.; Gao, G.; Xu, J.T. Physiological acclimation of Ulva prolifera to seasonal environmental factors drives green tides in the Yellow Sea. Mar. Environ. Res. 2022, 179, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Fan, W.; Wu, G. Comparison of Biomass Accuracy with Different Polarization Data with Interferometric Water Cloud Model. J. North-East For. Univ. 2020, 48, 27–32. [Google Scholar]
- An, D.; Xing, Q.; Yu, D.; Pan, S. A simple method for estimating macroalgae area under clouds on MODIS imagery. Front. Mar. Sci. 2022, 9, 995731. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wang, Z.L.; Fan, S.L.; Zhang, X.L.; Li, R.X.; Li, Y. The distribution of green algal micro-propagules and macroalgae at the early stage of green tide in the coastal area of South Jiangsu Province in 2014. J. Ocean Univ. 2017, 16, 81–86. [Google Scholar] [CrossRef]
- Zheng, L.X.; Wu, M.Q.; Zhou, M.; Zhao, L.J. Spatiotemporal distribution and influencing factors of Ulva prolifera and Sargassum and their coexistence in the South Yellow Sea, China. J. Oceanol. Limnol. 2022, 40, 1070–1084. [Google Scholar] [CrossRef]
- Tsokas, A.; Rysz, M.; Pardalos, P.M.; Dipple, K. SAR data applications in earth observation: An overview. Expert Syst. Appl. 2022, 205, 12. [Google Scholar] [CrossRef]
- Ma, Y.; Wong, K.; Tsou, J.Y.; Zhang, Y. Investigating Spatial Distribution of Green-Tide in the Yellow Sea in 2021 Using Combined Optical and SAR Images. J. Mar. Sci. Eng. 2022, 10, 127. [Google Scholar] [CrossRef]
Satellite | Sensor | Resolution/m | Band | Polarization Mode | Revisit Cycle/d |
---|---|---|---|---|---|
Sentinel-3 | OLCI | 300 | oa8/oa6/oa4 | 3 | |
NPP | VIIRS | 375 | I3/I2/I1 | 0.5 | |
Sentinel-1 | SAR | 10 | C | VV/VH | 6 |
Date | C-Band Backscattering Coefficient | Target Type | ||||
---|---|---|---|---|---|---|
Sea | Low Agg. | Med Agg. | High Agg. | |||
6 June | Avg. * | 0.003 764 | 0.005 270 | 0.026 737 | 0.181 294 | |
SD. * | 0.001 613 | 0.002 007 | 0.013 218 | 0.068 870 | ||
Avg. | 0.002 415 | 0.001 058 | 0.001 384 | 0.009 074 | ||
SD. | 0.000 357 | 0.000 210 | 0.000 353 | 0.003 933 | ||
12 June | Avg. | 0.003 853 | 0.008 874 | 0.044 334 | 0.250 420 | |
SD. | 0.001 740 | 0.007 635 | 0.028 067 | 0.099 731 | ||
Avg. | 0.001 197 | 0.000 772 | 0.001 602 | 0.013 081 | ||
SD. | 0.000 290 | 0.000 128 | 0.000 740 | 0.006 185 | ||
18 June | Avg. | 0.010 260 | 0.015 062 | 0.057 618 | 0.161 771 | |
SD. | 0.003 514 | 0.003 751 | 0.020 896 | 0.095 951 | ||
Avg. | 0.002 931 | 0.001 890 | 0.002 914 | 0.006 927 | ||
SD. | 0.000 614 | 0.000 527 | 0.000 671 | 0.003 824 | ||
30 June | Avg. | 0.005 241 | 0.026 198 | 0.067 999 | 0.226 059 | |
SD. | 0.000 943 | 0.007 796 | 0.031 615 | 0.114 716 | ||
Avg. | 0.001 162 | 0.002 298 | 0.003 004 | 0.008 952 | ||
SD. | 0.000 163 | 0.000 336 | 0.000 739 | 0.004 217 |
Classification Data\Validation Data | Sea | Low Agg. | Med Agg. | High Agg. |
---|---|---|---|---|
Sea | 201 | 7 | 0 | 0 |
Low Agg. | 18 | 19 | 8 | 0 |
Med Agg. | 0 | 8 | 12 | 1 |
High Agg. | 0 | 0 | 1 | 25 |
Overall accuracy = 85.38%; Kappa statistical index = 0.71. |
Date | Satellite | Distribution Area (km2) |
---|---|---|
6 June | Sentinel-3 | 14,117.38 |
NPP | 13,876.64 | |
Sentinel-1 | 12,984.12 | |
12 June | Sentinel-3 | |
NPP | ||
Sentinel-1 | 15,792.33 | |
18 June | Sentinel-3 | |
NPP | ||
Sentinel-1 | 21,466.30 | |
30 June | Sentinel-3 | |
NPP | 18,794.57 | |
Sentinel-1 | 18,210.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhu, X.; Li, X.; Jiang, S.; Shi, H.; Zhang, Y.; Chen, B.; Ge, Z.; Mao, L. All-Weather Monitoring of Ulva prolifera in the Yellow Sea Based on Sentinel-1, Sentinel-3, and NPP Satellite Data. Remote Sens. 2023, 15, 5772. https://doi.org/10.3390/rs15245772
Li C, Zhu X, Li X, Jiang S, Shi H, Zhang Y, Chen B, Ge Z, Mao L. All-Weather Monitoring of Ulva prolifera in the Yellow Sea Based on Sentinel-1, Sentinel-3, and NPP Satellite Data. Remote Sensing. 2023; 15(24):5772. https://doi.org/10.3390/rs15245772
Chicago/Turabian StyleLi, Chuan, Xiangyu Zhu, Xuwen Li, Sheng Jiang, Hao Shi, Yue Zhang, Bing Chen, Zhiwei Ge, and Lingfeng Mao. 2023. "All-Weather Monitoring of Ulva prolifera in the Yellow Sea Based on Sentinel-1, Sentinel-3, and NPP Satellite Data" Remote Sensing 15, no. 24: 5772. https://doi.org/10.3390/rs15245772
APA StyleLi, C., Zhu, X., Li, X., Jiang, S., Shi, H., Zhang, Y., Chen, B., Ge, Z., & Mao, L. (2023). All-Weather Monitoring of Ulva prolifera in the Yellow Sea Based on Sentinel-1, Sentinel-3, and NPP Satellite Data. Remote Sensing, 15(24), 5772. https://doi.org/10.3390/rs15245772