Spatiotemporal Analysis of Soil Moisture Variability and Its Driving Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
- Soil texture and structural data: This category includes organic carbon content, bulk density, field capacity, and saturated hydraulic conductivity (Ksat). Organic carbon content and bulk density data are sourced from the SoilGrids 1 km dataset [49], which is primarily generated using machine learning algorithms, ensuring satisfactory data consistency. In this study, we primarily utilize soil parameters at the 0–5 cm depth. Field capacity and Ksat data are derived from machine learning algorithms and bootstrapping methods, producing 1 km resolution global hydraulic property products with favorable accuracy [50].
- Topographic features data: This category comprises elevation, slope, aspect, and the topographic wetness index (TWI). These topographic features are primarily sourced from the digital elevation model (DEM) provided by GEBCO. The spatial resolution of the DEM is 15 arc seconds, equivalent to approximately 0.5 km. Based on the DEM, we further calculate slope and aspect information. Additionally, the TWI can capture changes in topography and their impact on soil runoff, establishing a connection with the spatial distribution of SM. In this study, we obtain this index from DEM data [33].
- Land cover patterns data: This category includes land surface cover type, NDVI, enhanced vegetation index (EVI), PET, and fractional vegetation cover (FVC). The first four data sources are MODIS MCD12Q1, MOD13A2, and MOD16A2. However, it should be noted that MOD13A2 and MOD16A2 have temporal resolutions of 16 and 8 days, respectively, which differ from the monthly scale in this study. Therefore, the data are harmonized relative to the monthly scale using the maximum value composite method, The FVC data were downloaded from the National Tibetan Plateau Data Center and information is provided in Table 1.
- Meteorological forcing data: This category includes precipitation and LST. The precipitation data used in this study are generated using the delta spatial downscaling method [51]. The selected LST data include daytime LST, nighttime LST, and the diurnal temperature range of LST, and they are all sourced from MOD11A2. The data are harmonized relative to the monthly scale using the monthly averaging method, and they are integrated with SM data.
Category | Variable | Product | Source | Reference |
---|---|---|---|---|
Soil | Bulk Density | SoilGrids | https://soilgrids.org/ (accessed on 1 April 2023) | Vereecken et al. [52] |
Organic Carbon | SoilGrids | https://soilgrids.org/ (accessed on 1 April 2023) | Huger et al. [53] | |
Field Capacity | Field Capacity | Zhang et al. [50] | Montzka et al. [54] | |
Ksat | Ksat | Zhang et al. [50] | Jia et al. [55] | |
Topographic | DEM | GEBCO_DEM | https://www.gebco.net/ (accessed on 1 April 2023) | Riihimäki et al. [56] |
Aspect | — | — | Varga et al. [57] | |
Slope | — | — | Varga et al. [57] | |
TWI | — | — | Riihimäki et al. [56] | |
Land | LUCC | MCD12Q1 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 April 2023) | Jiang et al. [58] |
NDVI | MOD13A2 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 April 2023) | Han et al. [59] | |
EVI | MOD13A2 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 April 2023) | Holzman et al. [60] | |
PET | MOD16A2 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 April 2023) | Manning et al. [61] | |
FVC | FVC | https://data.tpdc.ac.cn/zh-hans/data/f3bae344-9d4b-4df6-82a0-81499c0f90f7 (accessed on 1 April 2023) | Ru et al. [62] | |
Meteorological | Precipitation | Precipitation | Peng et al. [51] | Brocca et al. [63] |
LST_day | MOD11A2 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 April 2023) | Sun et al. [64] | |
LST_night | MOD11A2 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 1 April 2023) | Sun et al. [64] | |
LST_differ | — | — | Ru et al. [62] |
2.3. Methods
2.3.1. Soil Moisture Downscaling
2.3.2. Analysis of the Spatiotemporal Heterogeneity and Stability of Soil Moisture
2.3.3. Optimal Parameter-Based Geographical Detector (OPGD) Model
3. Results and Discussion
3.1. Spatiotemporal Heterogeneity and Stability of Soil Moisture in Heihe River Basin
3.2. Driving Factors of Soil Moisture in Heihe River Basin: Factor Detector
3.3. Driving Factors of Soil Moisture in Heihe River Basin: Interaction Detector
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pauwels, V.R.N.; Hoeben, R.; Verhoest, N.E.C.; De Troch, F.P.; Troch, P.A. Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrol. Process. 2002, 16, 995–1013. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Bloschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.C.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. Atmos. 2007, 112, D11112. [Google Scholar] [CrossRef]
- Hollinger, S.E.; Isard, S.A. A Soil Moisture Climatology of Illinois. J. Clim. 1994, 7, 822–833. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Anctil, F.; Mathieu, R.; Parent, L.E.; Viau, A.A.; Sbih, M.; Hessami, M. Geostatistics of near-surface moisture in bare cultivated organic soils. J. Hydrol. 2002, 260, 30–37. [Google Scholar] [CrossRef]
- Bell, K.R.; Blanchard, B.J.; Schmugge, T.J.; Witczak, M.W. Analysis of Surface Moisture Variations within Large-Field Sites. Water Resour. Res. 1980, 16, 796–810. [Google Scholar] [CrossRef]
- Teuling, A.J.; Troch, P.A. Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett. 2005, 32, L05404. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Devereaux, J.A.; Laymon, C.A.; Tsegaye, T.; Houser, P.R.; Jackson, T.J.; Graham, S.T.; Rodell, M.; van Oevelen, P.J. Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resour. Res. 1999, 35, 1839–1851. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Spatial-temporal variability of soil moisture and its estimation across scales. Water Resour. Res. 2010, 46, W02516. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Das, N.N.; Mohanty, B.P. Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape during SMEX02: A wavelet approach. Remote Sens. Environ. 2008, 112, 522–534. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S. Wavelet analysis of soil moisture measurements for hillslope hydrological processes. J. Hydrol. 2019, 575, 82–93. [Google Scholar] [CrossRef]
- Jawson, S.D.; Niemann, J.D. Spatial patterns from EOF analysis of soil moisture at a large scale and their dependence on soil, land-use, and topographic properties. Adv. Water Resour. 2007, 30, 366–381. [Google Scholar] [CrossRef]
- Perry, M.A.; Niemann, J.D. Analysis and estimation of soil moisture at the catchment scale using EOFs. J. Hydrol. 2007, 334, 388–404. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Yang, S.M.; Quan, Q.; Liang, W.J.; Liu, T.J. Characteristics of Agricultural Droughts and Spatial Stratified Heterogeneity and Dependence of Dominant Factors in Inner Mongolia Autonomous Region, China. Atmosphere 2021, 12, 1249. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.R.; Zhang, X.L. Spatial Distribution Characteristics of Soil Salinity and Moisture and Its Influence on Agricultural Irrigation in the Ili River Valley, China. Sustainability 2019, 11, 7142. [Google Scholar] [CrossRef]
- Yang, Z.H.; Zhao, J.; Zhu, G.F.; LIu, J.L.; Guo, W.B.; Huang, Z.H.; Wang, Y.Q. The remote sensing estimation and spatial pattern analysis of soil moisture in the Shiyang River Basin in consideration of vegetation cover affect. Acta Ecol. Sin. 2020, 40, 8826–8837. [Google Scholar]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. Giscience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhang, E.M.; Liu, Y.J.; Pan, T.; Tan, Q.H.; Ma, Z.A. Evaluating the Effects of Climate Change and Human Activities on the Seasonal Trends and Spatial Heterogeneity of Soil Moisture. Remote Sens. 2022, 14, 4862. [Google Scholar] [CrossRef]
- Luo, P.; Song, Y.Z.; Huang, X.; Ma, H.L.; Liu, J.; Yao, Y.; Meng, L.Q. Identifying determinants of spatio-temporal disparities in soil moisture of the Northern Hemisphere using a geographically optimal zones-based heterogeneity model. ISPRS J. Photogramm. Remote Sens. 2022, 185, 111–128. [Google Scholar] [CrossRef]
- Vachaud, G.; Desilans, A.P.; Balabanis, P.; Vauclin, M. Temporal Stability of Spatially Measured Soil-Water Probability Density Function. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar] [CrossRef]
- Crave, A.; GascuelOdoux, C. The influence of topography on time and space distribution of soil surface water content. Hydrol. Process. 1997, 11, 203–210. [Google Scholar] [CrossRef]
- Qu, W.; Bogena, H.; Huisman, J.A.; Vanderborght, J.; Schuh, M.; Priesack, E.; Vereecken, H. Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 2015, 42, 789–796. [Google Scholar] [CrossRef]
- Panciera, R. Effect of Land Surface Heterogeneity on Satellite Near-Surface Soil Moisture Observations. Ph.D. Thesis, University of Melbourne, Department of Civil and Environmental Engineering, Carlton, Australia, 2009. [Google Scholar]
- Charpentier, M.A.; Groffman, P.M. Soil Moisture Variability within Remote Sensing Pixels. J. Geophys. Res.-Atmos. 1992, 97, 18987–18995. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J.; Mackenzie, D.H. Topographic Effects on the Distribution of Surface Soil-Water and the Location of Ephemeral Gullies. Trans. ASAE 1988, 31, 1098–1107. [Google Scholar] [CrossRef]
- Woods, R.A.; Sivapalan, M.; Robinson, J.S. Modeling the spatial variability of subsurface runoff using a topographic index. Water Resour. Res. 1997, 33, 1061–1073. [Google Scholar] [CrossRef]
- Wang, T.J.; Wedin, D.A.; Franz, T.E.; Hiller, J. Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semi-arid sand dunes. J. Hydrol. 2015, 521, 447–459. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, G.Y.; Hu, W.; Fu, B.J. Spatial-temporal variability of soil water content in a cropland-shelterbelt-desert site in an arid inland river basin of Northwest China. J. Hydrol. 2016, 540, 873–885. [Google Scholar] [CrossRef]
- Leng, P.; Li, Z.L.; Duan, S.B.; Gao, M.F.; Huo, H.Y. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data. ISPRS J. Photogramm. Remote Sens. 2017, 131, 40–51. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, W.Z.; Chang, X.X.; Li, S.B. Response of Soil Moisture to Rainfall Pulse in Desert Region of the Heihe River Basin. J. Desert Res. 2011, 31, 716–722. [Google Scholar]
- Salvucci, G.D. Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation. Water Resour. Res. 2001, 37, 1357–1365. [Google Scholar] [CrossRef]
- Crow, W.T.; Wood, E.F. Multi-scale dynamics of soil moisture variability observed during SGP’97. Geophys. Res. Lett. 1999, 26, 3485–3488. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling Sparse Ground-Based Soil Moisture Observations for the Validation of Coarse-Resolution Satellite Soil Moisture Products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yang, J.; Chen, Y.N.; Wang, A.Q.; De Maeyer, P. The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sens. 2018, 10, 468. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.M.; Li, H.X.; Ma, Y.F.; Wang, J.H.; Zhang, Y.; Xu, Z.W.; Xu, T.R.; Song, L.S.; Yang, X.F.; et al. Intercomparison of Six Upscaling Evapotranspiration Methods: From Site to the Satellite Pixel. J. Geophys. Res. Atmos. 2018, 123, 6777–6803. [Google Scholar] [CrossRef]
- Zhang, A.J.; Liu, W.B.; Yin, Z.L.; Fu, G.B.; Zheng, C.M. How will climate change affect the water availability in the Heihe River Basin, Northwest China? J. Hydrometeorol. 2016, 17, 1517–1542. [Google Scholar] [CrossRef]
- Li, Z.L.; Xu, Z.G.; Shao, Q.X.; Yang, J. Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol. Process. 2009, 23, 2744–2753. [Google Scholar] [CrossRef]
- Pan, X.D.; Li, X.; Yang, K.; He, J.; Zhang, Y.L.; Han, X.J. Comparison of Downscaled Precipitation Data over a Mountainous Watershed: A Case Study in the Heihe River Basin. J. Hydrometeorol. 2001, 15, 1560–1574. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Shang, G.F.; Leng, P.; Ma, C.F.; Ma, J.W.; Zhang, X.; Li, Z.L. Estimation of quasi-full spatial coverage soil moisture with fine resolution in China from the combined use of ERA5-Land reanalysis and TRIMS land surface temperature product. Agric. Water Manag. 2023, 275, 107990. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Hengl, T.; De Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G. SoilGrids1km—Global soil information based on automated mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Schaap, M.G.; Zha, Y.Y. A High-Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model. Water Resour. Res. 2018, 54, 9774–9790. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Vereecken, H.; Maes, J.; Feyen, J.; Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Hugar, G.M.; Sorganvi, V.; Hiremath, G.; Hugar, G.M. Effect of organic carbon on soil moisture. Indian J. Nat. Sci. Int. Bimon. ISSN 2012, 976, 0997. [Google Scholar]
- Montzka, C.; Rotzer, K.; Bogena, H.R.; Sanchez, N.; Vereecken, H. A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sens. 2018, 10, 427. [Google Scholar] [CrossRef]
- Jia, D.; Wen, J.; Wang, X.; Wang, Z. Soil hydraulic conductivity and its influence on soil moisture simulations in the source region of the Yellow River―Take Maqu as an example. Sci. Cold Arid Reg. 2019, 11, 360–370. [Google Scholar]
- Riihimäki, H.; Kemppinen, J.; Kopecký, M.; Luoto, M. Topographic wetness index as a proxy for soil moisture: The importance of flow-routing algorithm and grid resolution. Water Resour. Res. 2021, 57, e2021WR029871. [Google Scholar] [CrossRef]
- Varga, C.; Csiszér, L. The influence of slope aspect on soil moisture. Acta Univ. Sapientiae Agric. Environ. 2020, 12, 82–93. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Duan, Y. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle Heihe River basin, China. Sci. Total Environ. 2015, 506, 259–271. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Zhao, Y. Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2509–2515. [Google Scholar]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Manning, C.; Widmann, M.; Bevacqua, E.; Van Loon, A.F.; Maraun, D.; Vrac, M. Soil moisture drought in Europe: A compound event of precipitation and potential evapotranspiration on multiple time scales. J. Hydrometeorol. 2018, 19, 1255–1271. [Google Scholar] [CrossRef]
- Ru, C.; Duan, S.; Jiang, X.; Leng, P.; Gao, M.; Huo, H.; Li, Z. A method for surface soil moisture estimation based on the DTR-FVC space. J. Univ. Chin. Acad. Sci. 2018, 35, 771. [Google Scholar]
- Brocca, L.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; Schüller, L.; Bojkov, B.; Wagner, W. SM2RAIN–ASCAT (2007–2018): Global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst. Sci. Data 2019, 11, 1583–1601. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, B.; Liu, H. Spatial evaluation of soil moisture (SM), land surface temperature (LST), and LST-derived SM indexes dynamics during SMAPVEX12. Sensors 2019, 19, 1247. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.F.; Wang, W.Z.; Han, X.J.; Li, X. Soil Moisture Retrieval in the Heihe River Basin Based on the Real Thermal Inertia Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1460–1467. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Schmugge, T.J. An Interpretation of Methodologies for Indirect Measurement of Soil-Water Content. Agric. For. Meteorol. 1995, 77, 191–205. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. Downscaling of SMAP Soil Moisture Using Land Surface Temperature and Vegetation Data. Vadose Zone J. 2018, 17, 1–15. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Bozorg-Haddad, O.; Chu, X.F. Geostatistics: Principles and methods. In Handbook of Probabilistic Models; Elsevier: Amsterdam, The Netherlands, 2020; pp. 229–242. [Google Scholar]
- Cao, F.; Ge, Y.; Wang, J.F. Optimal discretization for geographical detectors-based risk assessment. Giscience Remote Sens. 2013, 50, 78–92. [Google Scholar] [CrossRef]
- Meng, F.; Luo, M.; Sa, C.; Wang, M.; Bao, Y. Quantitative assessment of the effects of climate, vegetation, soil and groundwater on soil moisture spatiotemporal variability in the Mongolian Plateau. Sci. Total Environ. 2022, 809, 152198. [Google Scholar] [CrossRef]
- Han, Y.; Qiao, D.; Lu, H. Spatial-temporal coupling pattern between irrigation demand and soil moisture dynamics throughout wheat-maize rotation system in the North China Plain. Eur. J. Agron. 2023, 151, 126970. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.; Wang, Y.; Sa, C.; Duan, Y.; Bao, Y.; Liu, T. Quantitative detection and attribution of soil moisture heterogeneity and variability in the Mongolian Plateau. J. Hydrol. 2023, 621, 129673. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, H.; Zhao, Y.; Wang, S.; Han, J.; Yu, B.; Xue, J. Spatial heterogeneity and driving factors of soil moisture in alpine desert using the geographical detector method. Water 2021, 13, 2652. [Google Scholar] [CrossRef]
- Lin, P.F.; Zhu, X.; He, Z.B.; Du, J.; Chen, L.F. Research progress on soil moisture temporal stability. Acta Ecol. Sin. 2018, 38, 3403–3413. [Google Scholar]
Interaction Type | Standard of Judgment |
---|---|
Nonlinear weaken | |
Uni-variable weaken | |
Bi-variable enhance | |
Independent | |
Nonlinear enhance |
Month | Model | Nugget | Sill | Nugget Coefficient/% | Range/m | R2 | RSS |
---|---|---|---|---|---|---|---|
1 | Linear | 0.00103 | 0.00173 | 0.405 | 263,696 | 0.873 | 6.39 × 10−8 |
2 | Linear | 0.00098 | 0.00176 | 0.447 | 263,702 | 0.881 | 7.51 × 10−8 |
3 | Exponential | 0.00088 | 0.00344 | 0.744 | 1,833,000 | 0.851 | 1.24 × 10−7 |
4 | Spherical | 0.00082 | 0.00271 | 0.699 | 611,000 | 0.881 | 1.64 × 10−7 |
5 | Gaussian | 0.00115 | 0.01062 | 0.892 | 908,980 | 0.969 | 1.55 × 10−7 |
6 | Gaussian | 0.00135 | 0.01114 | 0.879 | 958,170 | 0.962 | 1.72 × 10−7 |
7 | Spherical | 0.00129 | 0.00491 | 0.737 | 611,000 | 0.873 | 6.41 × 10−7 |
8 | Gaussian | 0.00166 | 0.01560 | 0.894 | 962,847 | 0.962 | 3.41 × 10−7 |
9 | Gaussian | 0.00151 | 0.01128 | 0.866 | 916,774 | 0.961 | 2.05 × 10−7 |
10 | Exponential | 0.00110 | 0.00450 | 0.756 | 1,833,000 | 0.870 | 1.88 × 10−7 |
11 | Exponential | 0.00112 | 0.00366 | 0.693 | 1,833,000 | 0.890 | 8.60 × 10−8 |
12 | Linear | 0.00119 | 0.00194 | 0.384 | 263,702 | 0.949 | 2.69 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Song, X.; Zhu, X.; Guo, H.; Zhang, Y.; Zhang, Y. Spatiotemporal Analysis of Soil Moisture Variability and Its Driving Factor. Remote Sens. 2023, 15, 5768. https://doi.org/10.3390/rs15245768
Yin D, Song X, Zhu X, Guo H, Zhang Y, Zhang Y. Spatiotemporal Analysis of Soil Moisture Variability and Its Driving Factor. Remote Sensing. 2023; 15(24):5768. https://doi.org/10.3390/rs15245768
Chicago/Turabian StyleYin, Dewei, Xiaoning Song, Xinming Zhu, Han Guo, Yongrong Zhang, and Yanan Zhang. 2023. "Spatiotemporal Analysis of Soil Moisture Variability and Its Driving Factor" Remote Sensing 15, no. 24: 5768. https://doi.org/10.3390/rs15245768
APA StyleYin, D., Song, X., Zhu, X., Guo, H., Zhang, Y., & Zhang, Y. (2023). Spatiotemporal Analysis of Soil Moisture Variability and Its Driving Factor. Remote Sensing, 15(24), 5768. https://doi.org/10.3390/rs15245768