Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification
Abstract
:1. Introduction
- This study introduces a novel framework for HSI classification, referred to as the AMF-GCN, which focuses on extracting and adaptively fusing multi-branch features.
- Spectral and textural features are extracted and fused to achieve multiple GCNs, and an attention-based adaptive feature fusion method is utilized to eliminate redundant features.
- Extensive experimental results on three benchmark datasets demonstrate the effectiveness and superiority of the AMF-GCN over its competitors.
2. Related Work
2.1. GCNs
2.2. HSI Classification Based on Superpixels
3. Methodology
Algorithm 1 Learning Procedure for AMF-GCN |
|
3.1. HSI Preprocessing
3.1.1. Spectral Feature Extraction
3.1.2. Texture Feature Extraction
3.2. Multi-Branch Graph Construction
3.3. Adaptive Multi-Branch GCN
3.3.1. Multi-Branch GCN
3.3.2. Adaptive Feature Fusion
4. Results
4.1. HSI Datasets
4.2. Setup
4.2.1. Evaluation Indices
- (1)
- Overall accuracy
- (2)
- Average accuracy
- (3)
- Kappa coefficient
4.2.2. Compared Methods
4.2.3. Experimental Environment and Parameter Settings
4.3. Comparison Results
4.3.1. Quantitative Results
4.3.2. Visual Results
4.4. Parameter Analysis
4.5. Ablation Study
5. Discussion
5.1. Comparison with Various Graph-Based Models
5.2. Impact of the Number of Training Samples
5.3. Influence of Different Texture Feature Extraction Methods
5.4. Influence of the Number of Encoder Layer
5.5. Complete Image Visualization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral-spatial hyperspectral image classification: An overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Kruse, F. Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra. Int. J. Remote Sens. 1996, 17, 1623–1632. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, R.; Hu, J.; Chen, W.; Li, X. Remote Sensing Scene Data Generation Using Element Geometric Transformation and GAN-Based Texture Synthesis. Appl. Sci. 2022, 12, 3972. [Google Scholar] [CrossRef]
- Guan, R.; Li, Z.; Li, T.; Li, X.; Yang, J.; Chen, W. Classification of Heterogeneous Mining Areas Based on ResCapsNet and Gaofen-5 Imagery. Remote Sens. 2022, 14, 3216. [Google Scholar] [CrossRef]
- Peng, J.; Li, L.; Tang, Y.Y. Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspectral Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1790–1802. [Google Scholar] [CrossRef]
- Chen, W.; Ouyang, S.; Yang, J.; Li, X.; Zhou, G.; Wang, L. JAGAN: A Framework for Complex Land Cover Classification Using Gaofen-5 AHSI Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 1591–1603. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Audebert, N.; Le, B.; Lefevre, S. Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef]
- Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.A.; Chanussot, J. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3235–3247. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Li, J.J.; Xi, B.B.; Li, Y.S.; Du, Q.; Wang, K.Y. Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks. Remote Sens. 2018, 10, 396. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Yu, Z.; Chanussot, J.; Zeeshan, Z.; Yuan, L.; Luo, W.; Nawaz, S.A.; Bhatti, M.A.; Ain, Q.U.; Mehmood, A. Local Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification with Deep CNN and Gabor Filtering. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5514215. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, Y.; Zhao, X.; Siye, L.; Yang, N.; Cai, Y.; Zhan, Y. Multireceptive field: An adaptive path aggregation graph neural framework for hyperspectral image classification. Expert Syst. Appl. 2023, 217, 119508. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N.; Zhan, Y. Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5511812. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Fang, L.; Liu, Z.; Song, W. Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1412–1416. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- He, J.; Zhao, L.; Yang, H. HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Trans. Geosci. Remote Sens 2019, 58, 165–178. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Li, X.; Ding, M.; Pižurica, A. Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2615–2629. [Google Scholar] [CrossRef]
- Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Yu, W.; Shen, F.; Shen, Y. Convolutional neural network based classification for hyperspectral data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5075–5078. [Google Scholar]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep Supervised Learning for Hyperspectral Data Classification through Convolutional Neural Networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Ma, X.; Wang, H.; Geng, J. Spectral–spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4073–4085. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual spectral-spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 449–462. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Y.; Zhang, S.; Li, J.; Plaza, A.; Kang, X. Fast Hyperspectral Image Classification Combining Transformers and SimAM-based CNNs. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5522219. [Google Scholar] [CrossRef]
- Liu, W.; Liu, B.; He, P.; Hu, Q.; Gao, K.; Li, H. Masked Graph Convolutional Network for Small Sample Classification of Hyperspectral Images. Remote Sens. 2023, 15, 1869. [Google Scholar] [CrossRef]
- Xu, Z.; Su, C.; Wang, S.; Zhang, X. Local and Global Spectral Features for Hyperspectral Image Classification. Remote Sens. 2023, 15, 1803. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y. Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 241–245. [Google Scholar] [CrossRef]
- Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8246–8257. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 11. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, W.; Zhou, S.; Liu, X.; Song, L.; Yang, X.; Zhu, E. Deep graph clustering via dual correlation reduction. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 7603–7611. [Google Scholar]
- Tu, W.; Zhou, S.; Liu, X.; Ge, C.; Cai, Z.; Liu, Y. Hierarchically Contrastive Hard Sample Mining for Graph Self-Supervised Pretraining. IEEE Trans. N eural Netw. Learn. Syst. 2023; early access. [Google Scholar]
- He, X.; Chen, Y.; Ghamisi, P. Dual Graph Convolutional Network for Hyperspectral Image Classification with Limited Training Samples. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5502418. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network With Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8657–8671. [Google Scholar] [CrossRef]
- Yang, B.; Cao, F.; Ye, H. A Novel Method for Hyperspectral Image Classification: Deep Network with Adaptive Graph Structure Integration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5523512. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Zhang, E.; Zhang, T.; Yu, K.; Peng, J. Hyperspectral image classification via deep network with attention mechanism and multigroup strategy. Expert Syst. Appl. 2023, 224, 119904. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.-L.; Zhao, X.-F.; Cai, W.; He, F.; Cai, Y.-M.; Cai, W. Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification. Def. Technol. 2022, 23, 164–176. [Google Scholar]
- Bai, J.; Shi, W.; Xiao, Z.; Regan, A.C.; Ali, T.A.A.; Zhu, Y.; Zhang, R.; Jiao, L. Hyperspectral Image Classification Based on Superpixel Feature Subdivision and Adaptive Graph Structure. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524415. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, F. Hyperspectral Image Classification Based on Sparse Superpixel Graph. Remote Sens. 2021, 13, 3592. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Zhang, J.; Wang, Y. Parallel Graph Attention Network Model Based on Pixel and Superpixel Feature Fusion for Hyperspectral Image Classification. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 7226–7229. [Google Scholar]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4561–4572. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. Multilevel Superpixel Structured Graph U-Nets for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5516115. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Sun, H.-H.; Zhang, Q.; Zhuang, P.; Li, C. SSTNet: Spatial, Spectral, and Texture Aware Attention Network Using Hyperspectral Image for Corn Variety Identification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5514205. [Google Scholar] [CrossRef]
- Hammond, D.V.; Ergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30, 129–150. [Google Scholar] [CrossRef]
- Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning; Springer: New York, NY, USA, 2013; pp. 237–280. [Google Scholar]
- Jia, S.; Jiang, S.; Zhang, S.; Xu, M.; Jia, X. Graph-in-Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 59, 5966–5978. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiao, L.; Liu, X. Automatic Graph Learning Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5520716. [Google Scholar] [CrossRef]
- Rodarmel, C.; Shan, J. Principal Component Analysis for Hyperspectral Image Classification. Surv. Land. Inf. Syst. 2002, 62, 115–122. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Ojala, T.; Valkealahti, K.; Oja, E.; Pietikäinen, M. Texture Discrimination with Multidimensional Distributions of Signed Gray Level Differences. Pattern Recognit. 2001, 34, 727–739. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Djerriri, K.; Safia, A.; Adjoudj, R.; Karoui, M.S. Improving hyperspectral image classification by combining spectral and multiband compact texture features. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 465–468. [Google Scholar]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q. Diverse Region-Based CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5504205. [Google Scholar] [CrossRef]
Pavia University Dataset | |||
---|---|---|---|
No. | Class Name | Training | Testing |
1 | Asphalt | 30 | 6601 |
2 | Meadows | 30 | 18,619 |
3 | Gravel | 30 | 2069 |
4 | Trees | 30 | 3034 |
5 | Painted-metal-sheets | 30 | 1315 |
6 | Bare-soil | 30 | 4999 |
7 | Bitumen | 30 | 1300 |
8 | Self-blocking-bricks | 30 | 3652 |
9 | Shadows | 30 | 917 |
Salinas Dataset | Houston Dataset | ||||||
---|---|---|---|---|---|---|---|
No. | Class Name | Training | Testing | No. | Class Name | Training | Testing |
1 | Broccoli-green-weed 1 | 30 | 1979 | 1 | Healthy-grass | 30 | 1221 |
2 | Broccoli-green-weed 2 | 30 | 3696 | 2 | Stressed-grass | 30 | 1224 |
3 | Fallow | 30 | 1946 | 3 | Synthetic-grass | 30 | 667 |
4 | Fallow-rough-plow | 30 | 1364 | 4 | Trees | 30 | 1214 |
5 | Fallow-smooth | 30 | 2648 | 5 | Soil | 30 | 1212 |
6 | Stubble | 30 | 3929 | 6 | Water | 30 | 295 |
7 | Celery | 30 | 3549 | 7 | Residential | 30 | 1238 |
8 | Grapes-untrained | 30 | 11,241 | 8 | Commercial | 30 | 1214 |
9 | Soil-vineyard-develop | 30 | 6137 | 9 | Road | 30 | 1222 |
10 | Corn-Senesced-green-weeds | 30 | 3248 | 10 | Highway | 30 | 1197 |
11 | Lettuce-romianes-4 wk | 30 | 1038 | 11 | Railway | 30 | 1205 |
12 | Lettuce-romianes-5 wk | 30 | 1897 | 12 | Parking-Lot-1 | 30 | 1203 |
13 | Lettuce-romianes-6 wk | 30 | 886 | 13 | Parking-Lot-2 | 30 | 439 |
14 | Lettuce-romianes-7 wk | 30 | 1040 | 14 | Tennis-Court | 30 | 398 |
15 | Vineyard-untrained | 30 | 7238 | 15 | Running-Track | 30 | 630 |
16 | Vineyard-vertical-trellis | 30 | 1777 |
Dataset | T | lr | N | k |
---|---|---|---|---|
Pavia University | 100 | 0.0005 | 7000 | 300 |
Salinas | 200 | 0.0005 | 5000 | 250 |
Houston | 200 | 0.0005 | 9000 | 500 |
Class | ML-Based Methods | CNN-Based Methods | GNN-Based Methods | ||||
---|---|---|---|---|---|---|---|
JSDF | MBCUT | HybridSN | DR-CNN | SAGE-A | MDGCN | AMF-GCN | |
1 | 82.40 ± 4.07 | 87.49 ± 3.99 | 78.05 ± 1.21 | 92.10 ± 3.67 | 96.50 ± 1.28 | 93.55 ± 0.37 | 98.86 ± 2.14 |
2 | 90.76 ± 3.74 | 89.11 ± 5.58 | 93.02 ± 1.53 | 96.39 ± 1.85 | 99.17 ± 0.62 | 99.25 ± 0.23 | 99.65 ± 0.29 |
3 | 86.71 ± 4.14 | 86.24 ± 4.23 | 84.59 ± 2.24 | 84.23 ± 4.21 | 98.26 ± 1.77 | 92.03 ± 0.24 | 97.64 ± 1.23 |
4 | 92.88 ± 2.16 | 90.61 ± 3.39 | 96.43 ± 2.91 | 95.26 ± 1.43 | 92.85 ± 2.92 | 83.78 ± 1.55 | 99.21 ± 0.36 |
5 | 100.00 ± 0.00 | 97.18 ± 1.28 | 100.00 ± 0.00 | 97.77 ± 1.66 | 97.49 ± 2.43 | 99.47 ± 0.09 | 100.00 ± 0.00 |
6 | 94.30 ± 4.55 | 93.25 ± 2.93 | 92.25 ± 0.39 | 90.44 ± 4.28 | 94.78 ± 1.62 | 95.26 ± 0.50 | 98.67 ± 0.89 |
7 | 96.62 ± 1.37 | 93.49 ± 2.47 | 99.46 ± 0.09 | 89.05 ± 2.85 | 97.92 ± 1.48 | 98.92 ± 1.04 | 90.66 ± 3.62 |
8 | 94.69 ± 3.74 | 84.14 ± 4.78 | 81.30 ± 4.71 | 78.49 ± 4.71 | 89.84 ± 4.29 | 94.99 ± 1.33 | 88.68 ± 1.07 |
9 | 99.56 ± 0.36 | 96.57 ± 1.22 | 98.89 ± 0.42 | 96.34 ± 1.09 | 98.80 ± 0.82 | 81.03 ± 0.49 | 98.51 ± 0.52 |
OA | 90.82 ± 1.30 | 89.43 ± 2.14 | 89.99 ± 1.71 | 92.62 ± 1.83 | 96.19 ± 1.21 | 95.68 ± 0.22 | 97.45 ± 1.11 |
AA | 93.10 ± 0.65 | 90.90 ± 0.89 | 91.67 ± 1.52 | 91.12 ± 1.58 | 96.18 ± 0.92 | 93.15 ± 0.28 | 96.77 ± 1.26 |
Kappa | 88.02 ± 1.62 | 86.24 ± 2.62 | 86.87 ± 2.51 | 90.26 ± 1.72 | 96.24 ± 0.98 | 94.25 ± 0.29 | 96.63 ± 1.45 |
Class | ML-Based Methods | CNN-Based Methods | GNN-Based Methods | ||||
---|---|---|---|---|---|---|---|
JSDF | MBCUT | HybridSN | DR-CNN | SAGE-A | MDGCN | AMF-GCN | |
1 | 100.00 ± 0.00 | 99.18 ± 0.80 | 100.00 ± 0.00 | 99.40 ± 0.42 | 99.78 ± 0.21 | 99.98 ± 0.03 | 100.00 ± 0.00 |
2 | 100.00 ± 0.00 | 99.76 ± 0.33 | 100.00 ± 0.00 | 99.46 ± 0.39 | 100.00 ± 0.00 | 99.90 ± 0.28 | 100.00 ± 0.00 |
3 | 100.00 ± 0.00 | 99.13 ± 1.04 | 52.53 ± 5.13 | 98.58 ± 1.42 | 99.45 ± 0.35 | 99.80 ± 0.21 | 100.00 ± 0.00 |
4 | 99.93 ± 0.09 | 97.61 ± 0.82 | 100.00 ± 0.00 | 99.70 ± 0.17 | 100.00 ± 0.00 | 97.49 ± 2.16 | 99.18 ± 0.28 |
5 | 99.77 ± 0.31 | 96.54 ± 1.01 | 97.78 ± 1.47 | 98.90 ± 1.01 | 98.75 ± 1.17 | 97.96 ± 0.77 | 93.23 ± 2.59 |
6 | 100.00 + 0.00 | 99.74 ± 0.32 | 99.97 ± 0.01 | 99.57 ± 0.38 | 89.72 ± 3.62 | 99.10 ± 0.67 | 96.67 ± 1.37 |
7 | 99.99 ± 0.01 | 98.26 ± 1.64 | 99.72 ± 0.11 | 99.50 ± 0.42 | 100.00 ± 0.00 | 98.18 ± 1.49 | 99.29 ± 0.34 |
8 | 87.79 ± 4.89 | 81.98 ± 4.32 | 88.59 ± 1.28 | 75.59 ± 6.72 | 85.25 ± 5.27 | 92.78 ± 4.61 | 99.74 ± 0.13 |
9 | 99.67 ± 0.33 | 99.47 ± 0.51 | 99.95 ± 0.01 | 99.75 ± 0.19 | 95.31 ± 2.41 | 100.00 ± 0.00 | 92.98 ± 2.41 |
10 | 96.53 ± 2.55 | 92.21 ± 2.75 | 92.49 ± 1.89 | 94.29 ± 1.90 | 97.18 ± 0.82 | 98.31 ± 1.29 | 93.91 ± 1.19 |
11 | 99.71 ± 0.21 | 96.24 ± 2.68 | 99.24 ± 0.22 | 97.57 ± 0.91 | 96.36 ± 1.42 | 99.39 ± 0.55 | 99.75 ± 0.12 |
12 | 100.00 ± 0.00 | 98.98 ± 0.45 | 99.20 ± 0.17 | 99.99 ± 0.01 | 99.18 ± 0.27 | 99.01 ± 0.78 | 95.30 ± 0.99 |
13 | 100.00 ± 0.00 | 96.73 ± 1.66 | 97.49 ± 1.33 | 99.95 ± 0.05 | 97.26 ± 1.63 | 97.59 ± 1.32 | 90.15 ± 1.26 |
14 | 98.71 ± 0.72 | 96.50 ± 3.05 | 88.67 ± 5.91 | 98.57 ± 0.28 | 99.13 ± 0.46 | 97.92 ± 1.72 | 95.61 ± 2.88 |
15 | 81.86 ± 5.26 | 79.41 ± 5.67 | 87.63 ± 6.29 | 72.18 ± 4.97 | 87.23 ± 3.77 | 95.71 ± 4.57 | 96.39 ± 2.28 |
16 | 98.99 ± 0.63 | 96.89 ± 2.19 | 99.78 ± 0.19 | 98.45 ± 0.83 | 98.47 ± 0.81 | 98.18 ± 2.92 | 99.85 ± 0.06 |
OA | 94.67 ± 0.77 | 92.14 ± 0.86 | 93.35 ± 1.26 | 90.35 ± 1.67 | 92.82 ± 1.00 | 97.25 ± 0.87 | 98.03 ± 1.02 |
AA | 97.69 ± 0.34 | 95.54 ± 0.56 | 94.06 ± 2.41 | 95.72 ± 0.41 | 96.12 ± 0.82 | 98.21 ± 0.30 | 97.82 ± 0.58 |
Kappa | 94.06 ± 0.85 | 91.25 ± 0.95 | 92.59 ± 1.71 | 89.26 ± 1.30 | 93.26 ± 0.76 | 96.94 ± 0.96 | 97.74 ± 1.05 |
Class | ML-Based Methods | CNN-Based Methods | GNN-Based Methods | ||||
---|---|---|---|---|---|---|---|
JSDF | MBCUT | HybridSN | DR-CNN | SAGE-A | MDGCN | AMF-GCN | |
1 | 97.41 ± 1.21 | 92.86 ± 3.83 | 95.66 ± 1.17 | 95.62 ± 1.31 | 90.64 ±0.49 | 93.42 ± 4.25 | 97.51 ± 2.42 |
2 | 99.84 ± 0.25 | 92.18 ± 2.79 | 96.41 ± 2.26 | 96.78 ± 2.38 | 85.43 ± 0.34 | 93.67 ± 3.60 | 95.29 ± 1.86 |
3 | 99.57 ± 0.22 | 97.42 ± 1.19 | 99.55 ± 0.24 | 96.75 ± 1.40 | 99.25 ± 0.53 | 98.12 ± 1.09 | 99.85 ± 0.12 |
4 | 98.22 ± 2.80 | 90.96 ± 1.98 | 92.59 ± 1.67 | 93.41 ± 3.62 | 83.91 ± 2.42 | 95.58 ± 1.85 | 94.98 ± 4.13 |
5 | 100.00 ± 0.00 | 97.17 ± 1.29 | 98.68 ± 1.14 | 99.15 ± 0.57 | 99.17 ± 0.18 | 99.00 ± 1.30 | 96.12 ± 0.30 |
6 | 99.12 ± 1.09 | 91.78 ± 3.22 | 98.26 ± 0.96 | 93.83 ± 1.82 | 90.10 ± 0.20 | 93.28 ± 6.08 | 98.68 ± 0.57 |
7 | 91.32 ± 4.91 | 82.88 ± 3.81 | 82.55 ± 2.98 | 80.71 ± 5.81 | 85.04 ± 4.12 | 87.68 ± 4.41 | 94.54 ± 3.53 |
8 | 68.82 ± 6.16 | 71.85 ± 5.64 | 96.24 ± 2.21 | 78.32 ± 4.65 | 84.32 ± 2.29 | 80.45 ± 6.12 | 89.28 ± 2.01 |
9 | 69.47 ± 8.56 | 81.94 ± 4.25 | 84.35 ± 3.79 | 76.90 ± 3.86 | 75.08 ± 4.13 | 89.64 ± 2.26 | 91.12 ± 5.31 |
10 | 85.63 ± 9.32 | 87.31 ± 5.08 | 80.18 ± 3.78 | 81.99 ± 2.61 | 99.83 ± 0.09 | 90.06 ± 6.41 | 83.99 ± 1.92 |
11 | 94.51 ± 3.82 | 77.41 ± 6.46 | 89.30 ± 5.98 | 84.04 ± 0.88 | 100.00 ± 0.00 | 86.73 ± 3.22 | 94.30 ± 1.52 |
12 | 84.33 ± 5.33 | 86.35 ± 5.85 | 69.24 ± 8.55 | 81.92 ± 1.37 | 86.68 ± 3.52 | 89.44 ± 5.69 | 90.15 ± 0.87 |
13 | 98.10 ± 1.28 | 85.58 ± 5.35 | 93.80 ± 4.27 | 86.54 ± 4.17 | 91.30 ± 1.23 | 92.78 ± 4.45 | 88.04 ± 3.98 |
14 | 100.00 ± 0.00 | 96.85 ± 1.85 | 99.21 ± 0.19 | 99.31 ± 0.16 | 100.00 ± 0.00 | 99.43 ± 0.97 | 100.00 ± 0.00 |
15 | 99.86 ± 0.36 | 92.27 ± 3.32 | 99.73 ± 0.14 | 99.60 ± 0.29 | 100.00 ± 0.00 | 96.27 ± 1.72 | 96.92 ± 1.23 |
OA | 90.51 ± 0.95 | 87.07 ± 1.12 | 87.85 ± 1.36 | 88.08 ± 1.47 | 89.58 ± 2.39 | 91.40 ± 0.92 | 93.02 ± 0.49 |
AA | 92.46 ± 0.75 | 89.32 ± 1.08 | 89.93 ± 0.78 | 89.66 ± 1.17 | 90.18 ± 0.11 | 92.37 ± 0.89 | 93.84 ± 0.34 |
Kappa | 89.74 ± 1.03 | 86.01 ± 1.21 | 86.87 ± 1.94 | 87.10 ± 0.99 | 87.52 ± 1.26 | 90.70 ± 1.00 | 92.83 ± 0.53 |
Pavia University | |||||||
---|---|---|---|---|---|---|---|
No. | Spectral Feature | Texture Feature | Fusion Feature | Attention Fusion | OA | AA | Kappa |
1 | ✔ | 95.74 ± 0.74 | 93.33 ± 1.19 | 94.36 ± 0.98 | |||
2 | ✔ | 95.87 ± 0.48 | 94.58 ± 1.56 | 95.18 ± 0.64 | |||
3 | ✔ | 96.39 ± 0.96 | 93.98 ± 1.10 | 95.01 ± 0.84 | |||
4 | ✔ | ✔ | 96.49 ± 0.68 | 94.29 ± 0.71 | 95.37 ± 0.88 | ||
5 | ✔ | ✔ | ✔ | 96.59 ± 0.65 | 94.04 ± 1.14 | 95.11 ± 0.84 | |
6 | ✔ | ✔ | ✔ | ✔ | 97.45 ± 1.11 | 96.77 ± 1.26 | 96.63 ± 1.45 |
Salinas | |||||||
Spectral Feature | Texture Feature | Fusion Feature | Attention Fusion | OA | AA | Kappa | |
1 | ✔ | 94.49 ± 1.17 | 95.38 ± 1.40 | 94.10 ± 1.29 | |||
2 | ✔ | 94.45 ± 3.01 | 95.14 ± 0.90 | 94.72 ± 3.35 | |||
3 | ✔ | 96.37 ± 1.27 | 95.67 ± 0.65 | 96.14 ± 0.44 | |||
4 | ✔ | ✔ | 96.42 ± 1.97 | 95.65 ± 0.41 | 96.02 ± 0.22 | ||
5 | ✔ | ✔ | ✔ | 96.98 ± 0.51 | 96.54 ± 0.27 | 96.64 ± 0.56 | |
6 | ✔ | ✔ | ✔ | ✔ | 98.03 ± 1.02 | 97.82 ± 0.58 | 97.74 ± 1.05 |
Houston | |||||||
Spectral Feature | Texture Feature | Fusion Feature | Attention Fusion | OA | AA | Kappa | |
1 | ✔ | 91.59 ± 1.22 | 92.88 ± 0.89 | 91.19 ± 1.32 | |||
2 | ✔ | 90.33 ± 0.11 | 91.50 ± 0.12 | 90.17 ± 0.12 | |||
3 | ✔ | 92.28 ± 0.47 | 92.18 ± 0.56 | 91.14 ± 0.80 | |||
4 | ✔ | ✔ | 92.16 ± 0.72 | 92.26 ± 0.43 | 91.01 ± 0.78 | ||
5 | ✔ | ✔ | ✔ | 92.66 ± 0.59 | 92.36 ± 0.98 | 91.26 ± 0.64 | |
6 | ✔ | ✔ | ✔ | ✔ | 93.02 ± 0.49 | 93.84 ± 0.34 | 92.83 ± 0.53 |
Datasets | Matrix | MSAGE-Cal | MSSUG | SSG | SSPGAT | MARP | AMF-GCN |
---|---|---|---|---|---|---|---|
JSTARS 2021 | TGRS 2022 | RS 2021 | IGARSS 2023 | ESWA 2023 | Ours | ||
Pavia University | OA | 96.39 ± 1.27 | 92.06 ± 1.01 | 94.82 ± 0.94 | 96.35 ± 0.74 | 97.09 ± 1.24 | 97.45 ± 1.11 |
AA | 96.22 ± 1.84 | 97.65 ± 0.26 | 94.24 ± 0.63 | 95.88 ± 1.09 | 97.12 ± 1.35 | 96.77 ± 1.26 | |
Kappa | 95.24 ± 1.59 | 89.81 ± 1.26 | 94.69 ± 0.35 | 95.59 ± 0.67 | 96.12 ± 0.58 | 96.63 ± 1.45 | |
Salinas | OA | 97.61 ± 1.19 | 97.99 ± 1.14 | 97.64 ± 0.58 | 97.58 ± 0.84 | 97.81 ± 0.80 | 98.03 ± 1.02 |
AA | 96.94 ± 0.98 | 97.87 ± 0.85 | 96.82 ± 1.12 | 97.39 ± 0.91 | 98.04 ± 0.29 | 97.82 ± 0.58 | |
Kappa | 97.34 ± 0.87 | 97.43±0.79 | 97.15 ± 1.09 | 97.25 ± 0.78 | 97.12 ± 0.55 | 97.74 ± 1.05 |
Dataset | EMP | LBP | RULBP |
---|---|---|---|
Pavia University | 96.02 ± 2.21 | 96.89 ± 1.05 | 97.45 ± 1.11 |
Salinas | 96.18 ± 1.60 | 97.24 ± 1.33 | 98.03 ± 1.02 |
Houston | 91.11 ± 0.97 | 91.85 ± 0.72 | 93.02 ± 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Guan, R.; Li, Z.; Zhang, J.; Hu, Y.; Wang, X. Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification. Remote Sens. 2023, 15, 5483. https://doi.org/10.3390/rs15235483
Liu J, Guan R, Li Z, Zhang J, Hu Y, Wang X. Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification. Remote Sensing. 2023; 15(23):5483. https://doi.org/10.3390/rs15235483
Chicago/Turabian StyleLiu, Jie, Renxiang Guan, Zihao Li, Jiaxuan Zhang, Yaowen Hu, and Xueyong Wang. 2023. "Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification" Remote Sensing 15, no. 23: 5483. https://doi.org/10.3390/rs15235483
APA StyleLiu, J., Guan, R., Li, Z., Zhang, J., Hu, Y., & Wang, X. (2023). Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification. Remote Sensing, 15(23), 5483. https://doi.org/10.3390/rs15235483