Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions
Abstract
:1. Introduction
2. Datasets and Methods
2.1. GNSS Observations
2.2. Multiscale Postseismic Signal Modeling
2.3. Fault Slip Inversion
3. Results
3.1. Very Early Postseismic Deformations
3.2. Spatio-Temporal Distribution of Very Early Afterslip
3.3. Comparison of Afterslip Estimated by Daily and Subdaily Solutions
4. Discussion
4.1. Coseismic Coulomb Stress Variations
4.2. Possible Triggering Mechanisms for Very Early Aftershocks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, Y.J.; Simons, M.; Avouac, J.P.; Galetzka, J.; Sieh, K.; Chlieh, M.; Natawidjaja, D.; Prawirodirdjo, L.; Bock, Y. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science 2006, 312, 1921–1926. [Google Scholar] [CrossRef]
- Barbot, S.; Fialko, Y.; Bock, Y. Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J. Geophys. Res. Solid Earth 2009, 114, B07405. [Google Scholar] [CrossRef]
- Huang, M.H.; Bürgmann, R.; Freed, A.M. Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 2014, 396, 88–96. [Google Scholar] [CrossRef]
- McCormack, K.; Hesse, M.A.; Dixon, T.H.; Malservisi, R. Modeling the contribution of poroelastic deformation to postseismic geodetic signals. Geophys. Res. Lett. 2020, 47, e2020GL086945. [Google Scholar] [CrossRef]
- Freed, A.M. Afterslip (and only afterslip) following the 2004 Parkfield California earthquake. Geophys. Res. Lett. 2007, 34, L06312. [Google Scholar] [CrossRef]
- Avouac, J.P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 233–271. [Google Scholar] [CrossRef]
- Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 2018, 495, 112–134. [Google Scholar] [CrossRef]
- Tian, Z.; Freymueller, J.T.; Yang, Z. Postseismic deformation due to the 2012 Mw 7.8 Haida Gwaii and 2013 Mw 7.5 Craig earthquakes and its implications for regional rheological structure. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020197. [Google Scholar] [CrossRef]
- Churchill, R.M.; Werner, M.J.; Biggs, J.; Fagereng, Å. Afterslip moment scaling and variability from a global compilation of estimates. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023897. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef]
- Malservisi, R.; Schwartz, S.Y.; Voss, N.; Protti, M.; Gonzalez, V.; Dixon, T.H.; Jiang, Y.; Newman, A.V.; Richardson, J.; Walter, J.I.; et al. Multiscale postseismic behavior on a megathrust: The 2012 Nicoya earthquake, Costa Rica. Geochem. Geophys. Geosystems 2015, 16, 1848–1864. [Google Scholar] [CrossRef]
- Golriz, D.; Bock, Y.; Xu, X. Defining the coseismic phase of the crustal deformation cycle with seismogeodesy. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022002. [Google Scholar] [CrossRef]
- Peng, Z.; Zhao, P. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci. 2009, 2, 877–881. [Google Scholar] [CrossRef]
- Lange, D.; Bedford, J.R.; Moreno, M.; Tilmann, F.; Baez, J.C.; Bevis, M.; Krüger, F. Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011. Geophys. J. Int. 2014, 199, 784–799. [Google Scholar] [CrossRef]
- Ross, Z.E.; Rollins, C.; Cochran, E.S.; Hauksson, E.; Avouac, J.P.; Ben-Zion, Y. Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophys. Res. Lett. 2017, 44, 8260–8267. [Google Scholar] [CrossRef]
- Perfettini, H.; Frank, W.B.; Marsan, D.; Bouchon, M. A model of aftershock migration driven by afterslip. Geophys. Res. Lett. 2018, 45, 2283–2293. [Google Scholar] [CrossRef]
- Perfettini, H.; Frank, W.B.; Marsan, D.; Bouchon, M. Updip and along-strike aftershock migration model driven by afterslip: Application to the 2011 Tohoku-Oki aftershock sequence. J. Geophys. Res. Solid Earth 2019, 124, 2653–2669. [Google Scholar] [CrossRef]
- Tsang, L.L.; Vergnolle, M.; Twardzik, C.; Sladen, A.; Nocquet, J.-M.; Rolandone, F.; Agurto-Detzel, H.; Cavalié, O.; Jarrin, P.; Mothes, P. Imaging rapid early afterslip of the 2016 Pedernales earthquake, Ecuador. Earth Planet. Sci. Lett. 2019, 524, 115724. [Google Scholar] [CrossRef]
- Milliner, C.; Bürgmann, R.; Inbal, A.; Wang, T.; Liang, C. Resolving the kinematics and moment release of early afterslip within the first hours following the 2016 Mw 7.1 Kumamoto earthquake: Implications for the shallow slip deficit and frictional behavior of aseismic creep. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018928. [Google Scholar] [CrossRef]
- Jiang, J.; Bock, Y.; Klein, E. Coevolving early afterslip and aftershock signatures of a San Andreas fault rupture. Sci. Adv. 2021, 7, eabc1606. [Google Scholar] [CrossRef]
- Liu, K.; Geng, J.; Wen, Y.; Ortega-Culaciati, F.; Comte, D. Very early postseismic deformation following the 2015 Mw 8.3 Illapel earthquake, Chile revealed from kinematic GPS. Geophys. Res. Lett. 2022, 49, e2022GL098526. [Google Scholar] [CrossRef]
- Periollat, A.; Radiguet, M.; Weiss, J.; Twardzik, C.; Amitrano, D.; Cotte, N.; Marill, L.; Socquet, A. Transient brittle creep mechanism explains early postseismic phase of the 2011 Tohoku-Oki megathrust earthquake: Observations by high-rate GPS solutions. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024005. [Google Scholar] [CrossRef]
- Crowell, B.W.; Melgar, D. Slipping the Shumagin Gap: A kinematic coseismic and early afterslip model of the Mw 7.8 Simeonof Island, Alaska, earthquake. Geophys. Res. Lett. 2020, 47, e2020GL090308. [Google Scholar] [CrossRef]
- Li, S.; Freymueller, J.T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone. Geophys. Res. Lett. 2018, 45, 3453–3460. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Xiong, X.; Wen, Y. Rupture of the 2020 Mw 7.8 earthquake in the Shumagin gap inferred from seismic and geodetic observations. Geophys. Res. Lett. 2020, 47, e2020GL090806. [Google Scholar] [CrossRef]
- Xiao, Z.; Freymueller, J.T.; Grapenthin, R.; Elliott, J.L.; Drooff, C.; Fusso, L. The deep shumagin gap filled: Kinematic rupture model and slip budget analysis of the 2020 Mw 7.8 simeonof earthquake constrained by GNSS, global seismic waveforms, and floating InSAR. Earth Planet. Sci. Lett. 2021, 576, 117241. [Google Scholar] [CrossRef]
- Liu, C.; Lay, T.; Xiong, X. The 29 July 2021 MW 8.2 Chignik, Alaska Peninsula earthquake rupture inferred from seismic and geodetic observations: Re-rupture of the western 2/3 of the 1938 rupture zone. Geophys. Res. Lett. 2022, 49, e2021GL096004. [Google Scholar] [CrossRef]
- Elliott, J.L.; Grapenthin, R.; Parameswaran, R.; Xiao, Z.; Freymueller, J.; Logan, F. Cascading rupture of a megathrust. Sci. Adv. 2022, 8, eabm4131. [Google Scholar] [CrossRef]
- Brooks, B.A.; Goldberg, D.; DeSanto, J.; Ericksen, T.L.; Webb, S.C.; Nooner, S.L.; Chadwell, C.D.; Foster, J.; Minson, S.; Witter, R.; et al. Rapid shallow megathrust afterslip from the 2021 M 8.2 Chignik, Alaska earthquake revealed by seafloor geodesy. Sci. Adv. 2023, 9, eadf9299. [Google Scholar] [CrossRef]
- Geng, J.; Chen, X.; Pan, Y.; Mao, S.; Li, C.; Zhou, J.; Zhang, K. PRIDE PPP-AR: An open-source software for GPS PPP ambiguity resolution. GPS Solut. 2019, 23, 91. [Google Scholar] [CrossRef]
- Geng, J.; Chen, X.; Pan, Y.; Zhao, Q. A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University. J. Geod. 2019, 93, 2053–2067. [Google Scholar] [CrossRef]
- Geng, J.; Wen, Q.; Zhang, Q.; Li, G.; Zhang, K. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution. J. Geod. 2022, 96, 11. [Google Scholar] [CrossRef]
- Zheng, J.Z.; Guo, F. An adaptive stochastic model for GPS observations and its performance in precise point positioning. Surv. Rev. 2016, 48, 296–302. [Google Scholar] [CrossRef]
- Wei, H.H.; Yu, T.N.; Tu, J.S.; Ke, F.Y. Detection and Evaluation of Flood Inundation Using CYGNSS Data during Extreme Precipitation in 2022 in Guangdong Province, China. Remote Sens. 2023, 15, 297. [Google Scholar] [CrossRef]
- Wei, H.H.; He, X.F.; Feng, Y.M.; Jin, S.G.; Shen, F. Snow depth estimation on slopes using GPS-Interferometirc reflectometry. Sensors 2019, 19, 4994. [Google Scholar] [CrossRef] [PubMed]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99. [Google Scholar] [CrossRef]
- Jiang, Z.S.; Yuan, L.; Huang, D.; Yang, Z.; Hassan, A. Postseismic deformation associated with the 2015 Mw 7.8 Gorkha earthquake, Nepal: Investigating ongoing afterslip and constraining crustal rheology. J. Asian Earth Sci. 2018, 156, 1–10. [Google Scholar] [CrossRef]
- Jiang, Z.S.; Huang, D.; Yuan, L.; Hassan, A.; Zhang, L.; Yang, Z. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: Fault movement investigation and seismic hazard analysis. Earth Planets Space 2018, 70, 62. [Google Scholar] [CrossRef]
- Xiang, Y.F.; Yue, J.P.; Jiang, Z.S.; Xing, Y. Spatial-temporal properties of afterslip associated with the 2015 Mw 8.3 Illapel earthquake, Chile. Earth Planets Space 2021, 73, 27. [Google Scholar] [CrossRef]
- Wang, R.; Diao, F.; Hoechner, A. SDM—A geodetic inversion code 605 incorporating with layered crust structure and curved fault geometry. In Proceedings of the EGU General Assembly 2013, Vienna, Austria, 7–12 April 2013. EGU2013-2411-1. [Google Scholar]
- Wang, R.; Martin, F.L.; Roth, F. Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP. Comput. Geosci. 2003, 29, 195–207. [Google Scholar] [CrossRef]
- Twardzik, C.; Vergnolle, M.; Sladen, A.; Avallone, A. Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning. Sci. Rep. 2019, 9, 1175. [Google Scholar] [CrossRef]
- Twardzik, C.; Vergnolle, M.; Sladen, A.; Tsang, L.L.H. Very early identification of a bimodal frictional behavior during the post-seismic phase of the 2015 Mw 8.3 Illapel, Chile, earthquake. Solid Earth 2021, 12, 2523–2537. [Google Scholar] [CrossRef]
- Perfettini, H.; Avouac, J.P. Modeling afterslip and aftershocks following the 1992 Landers earthquake. J. Geophys. Res. Solid Earth 2007, 112, B07409. [Google Scholar] [CrossRef]
- Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. Solid Earth 2004, 109, B02303. [Google Scholar] [CrossRef]
- Freed, A.M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 2005, 33, 335–367. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. 2005, 110, B05S16. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching-User Guide; 2011–1060; Earthquake Science Center, Menlo Park Science Center: Menlo Park, CA, USA, 2011. [Google Scholar]
- Mignan, A. Modeling aftershocks as a stretched exponential relaxation. Geophys. Res. Lett. 2015, 42, 9726–9732. [Google Scholar] [CrossRef]
- Miller, S.A. Aftershocks are fluid-driven and decay rates controlled by permeability dynamics. Nat. Commun. 2020, 11, 5787. [Google Scholar] [CrossRef]
- Ozawa, S.; Ando, R. Mainshock and Aftershock Sequence Simulation in Geometrically Complex Fault Zones. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020865. [Google Scholar] [CrossRef]
- Frank, W.B.; Poli, P.; Perfettini, H. Mapping the rheology of the Central Chile subduction zone with aftershocks. Geophys. Res. Lett. 2017, 44, 5374–5382. [Google Scholar] [CrossRef]
Depth (km) | P_Vel (km/s) | S_Vel (km/s) | Dens. (g/cm3) | Qp | Qs |
---|---|---|---|---|---|
0.000 | 2.48 | 0.82 | 1.93 | 1200.0 | 600.0 |
0.632 | 4.27 | 2.26 | 2.28 | 1200.0 | 600.0 |
9.917 | 6.35 | 3.68 | 2.75 | 1200.0 | 600.0 |
19.202 | 6.96 | 3.99 | 2.89 | 1200.0 | 600.0 |
27.944 | 7.78 | 4.43 | 3.06 | 1200.0 | 600.0 |
223.944 | 8.08 | 4.47 | 3.38 | 1200.0 | 500.0 |
259.944 | 8.60 | 4.66 | 3.45 | 360.0 | 140.0 |
Site | RMS (Power Model) | RMS (Logarithmic Model) | ||
---|---|---|---|---|
N (mm) | E (mm) | N (mm) | E (mm) | |
AB07 | 7.31 | 6.16 | 7.45 | 6.27 |
AB13 | 8.79 | 8.61 | 8.97 | 8.72 |
AC12 | 8.16 | 7.73 | 9.22 | 7.98 |
AC13 | 9.17 | 5.94 | 9.68 | 6.34 |
AC21 | 8.21 | 7.63 | 8.79 | 8.24 |
AC28 | 8.43 | 7.51 | 8.46 | 7.62 |
AC40 | 9.68 | 9.05 | 9.79 | 9.11 |
AC41 | 9.09 | 8.69 | 9.15 | 8.74 |
AC52 | 8.45 | 6.72 | 8.65 | 6.84 |
Site | North | East | ||||
---|---|---|---|---|---|---|
a | b | c | a | b | c | |
AB07 | −1.369 | 0.2606 | 3.164 | 2.049 | 0.1664 | −0.4942 |
AB13 | −9.81 | 0.2252 | 16.21 | 8.284 | 0.195 | −15.04 |
AC12 | −34.19 | 0.04556 | 48.45 | 0.05303 | 0.5781 | −10.6 |
AC13 | −16.31 | 0.2448 | 28.34 | 3.351 | 0.3021 | −12.9 |
AC21 | −14.99 | 0.1661 | 15.62 | 11.79 | 0.1692 | −23.56 |
AC28 | −0.02518 | 0.7252 | 0.5623 | 0.4042 | 0.3523 | 0.1238 |
AC40 | −3.401 | 0.257 | −3.286 | 1.17 | 0.3128 | 9.127 |
AC41 | −1.021 | 0.3251 | 0.1114 | 1.868 | 0.2468 | −10.49 |
AC52 | −5.856 | 0.1904 | 5.045 | 2.121 | 0.1532 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Bian, Y.; Liu, J.; Xing, Y. Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions. Remote Sens. 2023, 15, 5469. https://doi.org/10.3390/rs15235469
Xiang Y, Bian Y, Liu J, Xing Y. Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions. Remote Sensing. 2023; 15(23):5469. https://doi.org/10.3390/rs15235469
Chicago/Turabian StyleXiang, Yunfei, Yankai Bian, Jie Liu, and Yin Xing. 2023. "Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions" Remote Sensing 15, no. 23: 5469. https://doi.org/10.3390/rs15235469
APA StyleXiang, Y., Bian, Y., Liu, J., & Xing, Y. (2023). Insights into Very Early Afterslip Associated with the 2021 M 8.2 Chignik, Alaska Earthquake Using Subdaily GNSS Solutions. Remote Sensing, 15(23), 5469. https://doi.org/10.3390/rs15235469