Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Papadopoulou, E.; Mallinis, G.; Siachalou, S.; Koutsias, N.; Thanopoulos, A.C.; Tsaklidis, G. Agricultural Land Cover Mapping through Two Deep Learning Models in the Framework of EU’s CAP Activities Using Sentinel-2 Multitemporal Imagery. Remote Sens. 2023, 15, 4657. https://doi.org/10.3390/rs15194657.
- Chen, H.; Yang, L.; Wu, Q. Enhancing Land Cover Mapping and Monitoring: An Interactive and Explainable Machine Learning Approach Using Google Earth Engine. Remote Sens. 2023, 15, 4585. https://doi.org/10.3390/rs15184585.
- Alizadeh Moghaddam, S.H.; Gazor, S.; Karami, F.; Amani, M.; Jin, S. An Unsupervised Feature Extraction Using Endmember Extraction and Clustering Algorithms for Dimension Reduction of Hyperspectral Images. Remote Sens. 2023, 15, 3855. https://doi.org/10.3390/rs15153855.
- Guo, H.; Ren, L. A Marine Small-Targets Classification Algorithm Based on Improved Convolutional Neural Networks. Remote Sens. 2023, 15, 2917. https://doi.org/10.3390/rs15112917.
- Wang, J.; Li, Y.; Chen, W. UAV Aerial Image Generation of Crucial Components of High-Voltage Transmission Lines Based on Multi-Level Generative Adversarial Network. Remote Sens. 2023, 15, 1412. https://doi.org/10.3390/rs15051412.
- Hasanpour Zaryabi, E.; Moradi, L.; Kalantar, B.; Ueda, N.; Halin, A.A. Unboxing the Black Box of Attention Mechanisms in Remote Sensing Big Data Using XAI. Remote Sens. 2022, 14, 6254. https://doi.org/10.3390/rs14246254.
- Feng, J.; Wang, D.; Gu, Z. Bidirectional Flow Decision Tree for Reliable Remote Sensing Image Scene Classification. Remote Sens. 2022, 14, 3943. https://doi.org/10.3390/rs14163943.
- Temenos, A.; Tzortzis, I.N.; Kaselimi, M.; Rallis, I.; Doulamis, A.; Doulamis, N. Novel Insights in Spatial Epidemiology Utilizing Explainable AI (XAI) and Remote Sensing. Remote Sens. 2022, 14, 3074. https://doi.org/10.3390/rs14133074.
- Xia, W.; Chen, J.; Liu, J.; Ma, C.; Liu, W. Landslide Extraction from High-Resolution Remote Sensing Imagery Using Fully Convolutional Spectral–Topographic Fusion Network. Remote Sens. 2021, 13, 5116. https://doi.org/10.3390/rs13245116.
- Fang, B.; Chen, G.; Chen, J.; Ouyang, G.; Kou, R.; Wang, L. CCT: Conditional Co-Training for Truly Unsupervised Remote Sensing Image Segmentation in Coastal Areas. Remote Sens. 2021, 13, 3521. https://doi.org/10.3390/rs13173521.
References
- Gunning, D.; Aha, D. DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 2019, 40, 44–58. [Google Scholar]
- Zhang, L.; Zhang, L. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable ai: A review of machine learning interpretability methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Wu, M.; Parbhoo, S.; Hughes, M.; Kindle, R.; Celi, L.; Zazzi, M.; Roth, V.; Doshi-Velez, F. Regional tree regularization for interpretability in deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 6413–6421. [Google Scholar]
- Zilke, J.R.; Loza Mencía, E.; Janssen, F. Deepred–rule extraction from deep neural networks. In Proceedings of the Discovery Science: 19th International Conference, DS 2016, Bari, Italy, 19–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 457–473. [Google Scholar]
- Wang, X.; Wang, D.; Xu, C.; He, X.; Cao, Y.; Chua, T.S. Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5329–5336. [Google Scholar]
- Ai, Q.; Azizi, V.; Chen, X.; Zhang, Y. Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms 2018, 11, 137. [Google Scholar] [CrossRef]
- Zintgraf, L.M.; Cohen, T.S.; Adel, T.; Welling, M. Visualizing deep neural network decisions: Prediction difference analysis. arXiv 2017, arXiv:1702.04595. [Google Scholar]
- Ghorbani, A.; Wexler, J.; Zou, J.Y.; Kim, B. Towards automatic concept-based explanations. Adv. Neural Inf. Process. Syst. 2019, 32, 1–18. [Google Scholar]
- Zhao, L.; Zeng, Y.; Liu, P.; Su, X. Band selection with the explanatory gradient saliency maps of convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2105–2109. [Google Scholar] [CrossRef]
- Kraus, S.; Azaria, A.; Fiosina, J.; Greve, M.; Hazon, N.; Kolbe, L.; Lembcke, T.B.; Muller, J.P.; Schleibaum, S.; Vollrath, M. AI for explaining decisions in multi-agent environments. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13534–13538. [Google Scholar]
- Bau, D.; Zhu, J.Y.; Strobelt, H.; Lapedriza, A.; Zhou, B.; Torralba, A. Understanding the role of individual units in a deep neural network. Proc. Natl. Acad. Sci. USA 2020, 117, 30071–30078. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Sun, Y.; Feng, S.; Ye, Y.; Li, X. Better Visual Interpretation for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ishikawa, S.n.; Todo, M.; Taki, M.; Uchiyama, Y.; Matsunaga, K.; Lin, P.; Ogihara, T.; Yasui, M. Example-based explainable AI and its application for remote sensing image classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103215. [Google Scholar] [CrossRef]
- Temenos, A.; Temenos, N.; Kaselimi, M.; Doulamis, A.; Doulamis, N. Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Wang, L.; Li, J. Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data. Remote Sens. 2023, 15, 5448. https://doi.org/10.3390/rs15235448
Liu P, Wang L, Li J. Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data. Remote Sensing. 2023; 15(23):5448. https://doi.org/10.3390/rs15235448
Chicago/Turabian StyleLiu, Peng, Lizhe Wang, and Jun Li. 2023. "Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data" Remote Sensing 15, no. 23: 5448. https://doi.org/10.3390/rs15235448
APA StyleLiu, P., Wang, L., & Li, J. (2023). Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data. Remote Sensing, 15(23), 5448. https://doi.org/10.3390/rs15235448