Modeling the Global Relationship via the Point Cloud Transformer for the Terrain Filtering of Airborne LiDAR Data
Abstract
:1. Introduction
2. Related Works
2.1. Point-Based Deep Learning
2.2. Point Cloud Attention Mechanism
3. Methods
3.1. Overall Network Framework
3.2. Elevation Offset-Attention
3.3. Computational Complexity
3.4. Training Method
4. Results
4.1. Train Dataset
4.2. Test Dataset
4.3. Experimental Parameters and Evaluation Indicators
4.4. Validation Analysis on OpenGF Test Set
4.5. Validation Analysis on the Navarre Test Set
5. Discussion
5.1. Impact of Different Grid Subsampling Sizes
5.2. Impact of Global Scene Size
5.3. Comparison of Different Attention Mechanisms
5.4. Effective Receptive Field Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, L.; McCarty, G.W.; Zhang, X.; Lang, M.W.; Vanderhoof, M.K.; Li, X.; Huang, C.; Lee, S.; Zou, Z. Mapping Forested Wetland Inundation in the Delmarva Peninsula, USA Using Deep Convolutional Neural Networks. Remote Sens. 2020, 12, 644. [Google Scholar] [CrossRef]
- Li, D.; Tang, X.; Tu, Z.; Fang, C.; Ju, Y. Automatic Detection of Forested Landslides: A Case Study in Jiuzhaigou County, China. Remote Sens. 2023, 15, 3850. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, F.; Fu, W. The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Nat. Hazards 2020, 101, 853–877. [Google Scholar] [CrossRef]
- Kakavas, M.P.; Nikolakopoulos, K.G. Digital Elevation Models of Rockfalls and Landslides: A Review and Meta-Analysis. Geosciences 2021, 11, 256. [Google Scholar] [CrossRef]
- McClean, F.; Dawson, R.; Kilsby, C. Implications of Using Global Digital Elevation Models for Flood Risk Analysis in Cities. Water Resour. Res. 2020, 56, e2020WR028241. [Google Scholar] [CrossRef]
- Ozendi, M.; Akca, D. A point cloud filtering method based on anisotropic error model. Photogramm. Rec. 2023, 38, 1–38. [Google Scholar] [CrossRef]
- Gökgöz, T.; Baker, M.K.M. Large Scale Landform Mapping Using Lidar DEM. ISPRS Int. J. Geo-Inf. 2015, 4, 1336–1345. [Google Scholar] [CrossRef]
- O’Banion, M.S.; Olsen, M.J.; Hollenbeck, J.P.; Wright, W.C. Data Gap Classification for Terrestrial Laser Scanning-Derived Digital Elevation Models. ISPRS Int. J. Geo-Inf. 2020, 9, 749. [Google Scholar] [CrossRef]
- Buján, S.; González-Ferreiro, E.M.; Cordero, M.; Miranda, D. PpC: A new method to reduce the density of lidar data. Does it affect the DEM accuracy? Photogramm. Rec. 2019, 34, 304–329. [Google Scholar] [CrossRef]
- Susaki, J. Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation. Remote Sens. 2012, 4, 1804–1819. [Google Scholar] [CrossRef]
- Evans, J.S.; Hudak, A.T. A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE T. Geosci. Remote 2007, 45, 1029–1038. [Google Scholar] [CrossRef]
- Yan, W.Y. Scan Line Void Filling of Airborne LiDAR Point Clouds for Hydroflattening DEM. IEEE J.-STARS 2021, 14, 6426–6437. [Google Scholar] [CrossRef]
- Pan, Z.; Tang, J.; Tjahjadi, T.; Wu, Z.; Xiao, X. A Novel Rapid Method for Viewshed Computation on DEM through Max-Pooling and Min-Expected Height. ISPRS Int. J. Geo-Inf. 2020, 9, 633. [Google Scholar] [CrossRef]
- Medeiros, S.C.; Bobinsky, J.S.; Abdelwahab, K. Locality of Topographic Ground Truth Data for Salt Marsh Lidar DEM Elevation Bias Mitigation. IEEE J-STARS 2022, 15, 5766–5775. [Google Scholar] [CrossRef]
- Cao, S.; Pan, S.; Guan, H. Random forest-based land-use classification using multispectral LiDAR data. Bull. Surv. Mapp. 2019, 11, 79–84. [Google Scholar] [CrossRef]
- Wu, J.; Liu, L. Automatic DEM generation from aerial lidar data using multiscale support vector machines. Mippr 2011 Remote Sens. Image Process. Geogr. Inf. Syst. Other Appl. 2011, 8006, 63–69. [Google Scholar] [CrossRef]
- Lodha, S.; Kreps, E.; Helmbold, D.; Fitzpatrick, D. Aerial LiDAR data classification using support vector machines (SVM). In Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, NC, USA, 14–16 June 2006; pp. 567–574. [Google Scholar] [CrossRef]
- Wu, J.; Guo, N.; Liu, R.; Xu, G. Aerial Lidar Data Classification Using Weighted Support Vector Machines. Int. Conf. Digit. Image Process. 2013, 38, 1–5. [Google Scholar]
- Niemeyer, J.; Wegner, J.D.; Mallet, C.; Rottensteiner, F.; Soergel, U. Conditional Random Fields for Urban Scene Classification with Full Waveform LiDAR Data. Photogramm. Image Anal. ISPRS Conf. 2011, 6952, 233–244. [Google Scholar] [CrossRef]
- Zheng, Y.; Cao, Z.G. Classification method for aerial LiDAR data based on Markov random field. Electron. Lett. 2011, 47, 934. [Google Scholar] [CrossRef]
- Luo, W.; Ma, H.; Yuan, J.; Zhang, L.; Ma, H.; Cai, Z.; Zhou, W. High-Accuracy Filtering of Forest Scenes Based on Full-Waveform LiDAR Data and Hyperspectral Images. Remote Sens. 2023, 15, 3499. [Google Scholar] [CrossRef]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution on x-transformed points. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 2–8 December 2018; pp. 820–830. [Google Scholar] [CrossRef]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha, Qatar, 2014; pp. 1746–1751. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. In Proceedings of the Seventh International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019; pp. 2818–2826. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, C.; Du, B.; Ishida, T.; Zhang, L.; Sugiyama, M. LocalDrop: A Hybrid Regularization for Deep Neural Networks. IEEE T. Pattern Anal. 2021, 44, 3590–3601. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Akhtar, N.; Mian, A. Spherical Convolutional Neural Network for 3D Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9631–9640. [Google Scholar] [CrossRef]
- Fu, K.; Liu, S.; Luo, X.; Wang, M. Robust Point Cloud Registration Framework Based on Deep Graph Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; IEEE: New York, NY, USA, 2021; pp. 8893–8902. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, C.; Li, Z.; Wang, S.; Cui, S. PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks with Adaptive Sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5588–5597. [Google Scholar] [CrossRef]
- Pan, X.; Xia, Z.; Song, S.; Li, L.E.; Huang, G. 3d object detection with pointformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7463–7472. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. NIPS 2017, 30, 1–15. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. NIPS 2017, 30, 1–14. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Y.; Lang, B.; Huang, L. DGCNN: Disordered Graph Convolutional Neural Network Based on the Gaussian Mixture Model. Neurocomputing 2017, 321, 346–356. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar] [CrossRef]
- Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M.; Kautz, J. SPLATNet: Sparse Lattice Networks for Point Cloud Processing. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–22 June 2018; pp. 2530–2539. [Google Scholar] [CrossRef]
- You, Y.; Lou, Y.; Liu, Q.; Tai, Y.; Ma, L.; Lu, C.; Wang, W. Pointwise Rotation-Invariant Network with Adaptive Sampling and 3D Spherical Voxel Convolution. CVPR 2019, 34, 12717–12724. [Google Scholar] [CrossRef]
- Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10529–10538. [Google Scholar] [CrossRef]
- Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the International Conference on Machine Learning PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4055–4064. [Google Scholar] [CrossRef]
- Huang, S.; Chen, Y.; Jia, J.; Wang, L. Multi-View Transformer for 3D Visual Grounding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 15524–15533. [Google Scholar] [CrossRef]
- Hui, L.; Wang, L.; Tang, L.; Lan, K.; Xie, J.; Yang, J. 3D Siamese Transformer Network for Single Object Tracking on Point Clouds. ECCV 2022, 13662, 293–310. [Google Scholar] [CrossRef]
- Zhao, H. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 16259–16268. [Google Scholar] [CrossRef]
- Lu, D.; Xie, Q.; Xu, L.; Li, J. 3DCTN: 3D Convolution-Transformer Network for Point Cloud Classification. IEEE T. Intell. Transp. 2022, 23, 24854–24865. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Li, J.; Fang, Z.; Jiang, X.; Huq, K.M.S. LFT-Net: Local feature transformer network for point clouds analysis. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2158–2168. [Google Scholar] [CrossRef]
- Guo, M.; Cai, J.; Liu, Z.; Mu, T.; Martin, R.R.; Hu, S. PCT: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199. [Google Scholar] [CrossRef]
- Li, H.; Zheng, T.; Chi, Z.; Yang, Z.; Wang, W.; Wu, B.; Lin, B.; Cai, D. APPT: Asymmetric Parallel Point Transformer for 3D Point Cloud Understanding. arXiv 2023, arXiv:2303.17815. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, V.Q. XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv 2019, arXiv:1906.08237. [CrossRef]. [Google Scholar]
- Fu, J.; Liu, J.; Jiang, J.; Li, Y.; Bao, Y.; Lu, H. Scene segmentation with dual relation-aware attention network. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2547–2560. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar] [CrossRef]
- Xiao, C.; Wachs, J.; Xiao, C.; Wachs, J. Triangle-net: Towards robustness in point cloud learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 826–835. [Google Scholar] [CrossRef]
- Qin, N.; Tan, W.; Ma, L.; Zhang, D.; Li, J. OpenGF: An Ultra-Large-Scale Ground Filtering Dataset Built upon Open ALS Point Clouds around the World. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Nashville, TN, USA, 19–25 June 2021. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.; Whitman, D.; Shyu, M.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE T. Geosci. Remote 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Lin, H.; Zheng, X.; Li, L.; Chao, F.; Wang, S.; Wang, Y.; Tian, Y.; Ji, R. Meta Architecure for Point Cloud Analysis. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–23 June 2022; pp. 17682–17691. [Google Scholar] [CrossRef]
- Qiu, H.; Yu, b.; Tao, D. Collect-and-Distribute Transformer for 3D Point Cloud Analysis. arXiv 2023, arXiv:2306.01257. [Google Scholar] [CrossRef]
- Guo, M.; Liu, Z.; Mu, T.; Hu, S. Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks. IEEE T. Pattern Anal. 2023, 45, 5436–5447. [Google Scholar] [CrossRef] [PubMed]
Dataset | Coverage | Density (Points/m) | Non-Ground (Points) | Ground (Points) |
---|---|---|---|---|
OpenGF Test I | 6.6 km | 6 | 10,431,224 | 5,332,664 |
OpenGF Test II | 1.1 km | 14 | 962,357 | 752,242 |
Navarre Test I | 2 km | 1 | 7,137,467 | 976,293 |
Navarre Test II | 2 km | 1 | 1,267,144 | 2,331,908 |
Method | Test I | Test II | ||||||
---|---|---|---|---|---|---|---|---|
PMF | 0.9063 | 0.8242 | 0.8522 | 0.7962 | 0.8656 | 0.7606 | 0.7850 | 0.7361 |
CSF | 0.9306 | 0.8691 | 0.8817 | 0.8564 | 0.8934 | 0.8073 | 0.8108 | 0.8038 |
RandLA-Net | 0.9766 | 0.9487 | 0.9657 | 0.9318 | 0.9533 | 0.9101 | 0.918 | 0.9022 |
RandLA-Net+E-OA | 0.9761 | 0.9485 | 0.9650 | 0.9319 | 0.9596 | 0.9213 | 0.9301 | 0.9126 |
Point transformer | 0.9743 | 0.9436 | 0.9625 | 0.9247 | 0.9144 | 0.8468 | 0.8503 | 0.8433 |
Point transformer+E-OA | 0.9770 | 0.9495 | 0.9662 | 0.9328 | 0.9392 | 0.8845 | 0.8951 | 0.8738 |
PointMeta-L | 0.9661 | 0.9259 | 0.9510 | 0.9008 | 0.9486 | 0.9010 | 0.9116 | 0.8903 |
PointMeta-L+E-OA | 0.9748 | 0.9448 | 0.9631 | 0.9266 | 0.9578 | 0.9182 | 0.9262 | 0.9102 |
CDFormer | 0.9717 | 0.9382 | 0.9586 | 0.9179 | 0.9421 | 0.8897 | 0.8988 | 0.8806 |
Method | Test I | Test II | ||||||
---|---|---|---|---|---|---|---|---|
PMF | 0.8512 | 0.6290 | 0.8328 | 0.4253 | 0.8543 | 0.6414 | 0.4729 | 0.8100 |
CSF | 0.8105 | 0.5278 | 0.7970 | 0.2585 | 0.8186 | 0.6549 | 0.5403 | 0.7695 |
RandLA-Net | 0.9461 | 0.7836 | 0.9408 | 0.6264 | 0.9443 | 0.8899 | 0.8675 | 0.9124 |
RandLA-Net+E-OA | 0.9519 | 0.8170 | 0.9462 | 0.6879 | 0.9504 | 0.9012 | 0.8804 | 0.9220 |
Point transformer | 0.9487 | 0.8106 | 0.9425 | 0.6786 | 0.951 | 0.9023 | 0.8818 | 0.9227 |
Point transformer+E-OA | 0.9509 | 0.8147 | 0.9450 | 0.6844 | 0.9489 | 0.8985 | 0.8779 | 0.9191 |
PointMeta-L | 0.9386 | 0.7765 | 0.9314 | 0.6216 | 0.9293 | 0.8623 | 0.8343 | 0.8903 |
PointMeta-L+E-OA | 0.9408 | 0.7852 | 0.9339 | 0.6365 | 0.9374 | 0.8758 | 0.8487 | 0.9028 |
CDFormer | 0.9288 | 0.7518 | 0.9210 | 0.5825 | 0.8903 | 0.7740 | 0.6939 | 0.8540 |
Downsampling (m) | ||||
---|---|---|---|---|
0.25 | 0.9281 | 0.8659 | 0.8639 | 0.8678 |
0.5 | 0.9415 | 0.8895 | 0.8926 | 0.8863 |
0.75 | 0.9522 | 0.9082 | 0.9154 | 0.9010 |
1.0 | 0.9596 | 0.9213 | 0.9301 | 0.9126 |
Points | ||||
---|---|---|---|---|
0.9610 | 0.9240 | 0.9324 | 0.9156 | |
0.9572 | 0.9170 | 0.9254 | 0.9087 | |
0.9502 | 0.9043 | 0.9128 | 0.8958 |
Method | Test I | Test II | ||||||
---|---|---|---|---|---|---|---|---|
RandLA-Net + External | 0.9701 | 0.9431 | 0.9582 | 0.9280 | 0.9563 | 0.9169 | 0.9230 | 0.9108 |
RandLA-Net + APPT | 0.9696 | 0.9419 | 0.9596 | 0.9242 | 0.9513 | 0.9144 | 0.9233 | 0.9055 |
RandLA-Net + CDFormer | 0.9534 | 0.8993 | 0.9337 | 0.8648 | 0.8945 | 0.8086 | 0.8192 | 0.7979 |
RandLA-Net + E-OA | 0.9761 | 0.9485 | 0.9650 | 0.9319 | 0.9596 | 0.9213 | 0.9301 | 0.9126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Hao, R.; Cheng, Z.; Li, T.; Wang, T.; Lu, W.; Ding, Y.; Hu, H. Modeling the Global Relationship via the Point Cloud Transformer for the Terrain Filtering of Airborne LiDAR Data. Remote Sens. 2023, 15, 5434. https://doi.org/10.3390/rs15235434
Cheng L, Hao R, Cheng Z, Li T, Wang T, Lu W, Ding Y, Hu H. Modeling the Global Relationship via the Point Cloud Transformer for the Terrain Filtering of Airborne LiDAR Data. Remote Sensing. 2023; 15(23):5434. https://doi.org/10.3390/rs15235434
Chicago/Turabian StyleCheng, Libo, Rui Hao, Zhibo Cheng, Taifeng Li, Tengxiao Wang, Wenlong Lu, Yulin Ding, and Han Hu. 2023. "Modeling the Global Relationship via the Point Cloud Transformer for the Terrain Filtering of Airborne LiDAR Data" Remote Sensing 15, no. 23: 5434. https://doi.org/10.3390/rs15235434
APA StyleCheng, L., Hao, R., Cheng, Z., Li, T., Wang, T., Lu, W., Ding, Y., & Hu, H. (2023). Modeling the Global Relationship via the Point Cloud Transformer for the Terrain Filtering of Airborne LiDAR Data. Remote Sensing, 15(23), 5434. https://doi.org/10.3390/rs15235434