Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
- Collapses: Collapses are usually sudden in nature; some have no significant deformation in the InSAR deformation results. In optical images, the contour line of the collapse body is obvious; its color is related to the lithology, which is usually lighter in tone than the surrounding, as mostly gray or grayish white. The collapse body is piled up on the bottom of slopes with a bumpy surface. Sometimes huge boulders are visible. There is very poor vegetation cover.
- Unstable slopes: Unstable slopes are slopes with large deformation and they are often close to underground resource extraction areas.
- Landslides: The main types of landslides include rotational landslides, translational landslides, and debris flows. The deformation is evident, and a number of typical features can be easily distinguished, like the detachment and accumulation zones, crown, scarp, flank, main body, foot, and toe.
2.2. Datasets
3. Materials and Methods
3.1. Overview
3.2. MT-InSAR Processing
3.2.1. Interferometric Point Target Selection
3.2.2. Calculation of Linear Deformation
3.2.3. Calculation of Nonlinear Deformation
3.3. Geological Hazard Susceptibility Assessment Method
3.3.1. Influencing Factors Selection
- Information Value Model
- 2
- Multicollinearity Analysis
- 3
- Relief-F
3.3.2. Geological Hazard Susceptibility Assessment Models
- RF
- 2
- SVM
- 3
- CNN
- 4
- RNN
3.3.3. Model Evaluation
4. Results
4.1. Deformation Results from MT-InSAR
4.2. Geological Hazard Identification
- Using 10 mm/year as the threshold [50], we selected the areas where deformation points with deformation greater than this threshold gathered, and considered these areas as deformation areas;
- Using orthophoto images generated by UAV, Google Earth, we considered the terrain, topography, and spectral, textural, topographical, and morphological features of the deformation area to confirm whether it was a geological hazard. Finally, we classified geological hazards [34];
- At this point, there were still geological hazards that could not be identified by deformation. Supplementary identification was carried out, based on optical images, topography, and the distribution of historical geological hazards.
4.3. Geological Hazard Susceptibility Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Factor | Factor Class | No. of Grids | % of Grids | Geohazard Grids | Geohazard Grids(%) | Information Value |
---|---|---|---|---|---|---|
Elevation (m) | 36–322 | 209,817 | 14.21% | 1113 | 15.52% | 0.088047 |
323–607 | 493,627 | 33.43% | 2121 | 29.57% | −0.122668 | |
608–893 | 458,644 | 31.06% | 1642 | 22.89% | −0.305135 | |
894–1179 | 220,270 | 14.92% | 1295 | 18.06% | 0.190881 | |
1180–1465 | 70,910 | 4.80% | 956 | 13.33% | 1.020815 | |
1466–1750 | 17,422 | 1.18% | 43 | 0.60% | −0.677065 | |
1751–2036 | 5779 | 0.39% | 2 | 0.03% | −2.641615 | |
Slope (rad) | 0–0.27 | 250,062 | 16.94% | 1132 | 15.78% | −0.070538 |
0.28–0.54 | 540,151 | 36.58% | 2909 | 40.56% | 0.103146 | |
0.55–0.81 | 591,174 | 40.04% | 2879 | 40.14% | 0.002517 | |
0.82–1.08 | 90,736 | 6.15% | 248 | 3.46% | −0.575096 | |
1.09–1.35 | 4288 | 0.29% | 4 | 0.06% | −1.650096 | |
Aspect | Flat (−1) | 917 | 0.06% | 0 | 0.00% | 0 |
North (337.5°–22.5°) | 186,881 | 12.66% | 644 | 8.98% | −0.382895 | |
Northeast (22.5°–67.5°) | 193,637 | 13.11% | 690 | 9.62% | −0.309825 | |
East (67.5°–112.5°) | 198,927 | 13.47% | 913 | 12.73% | −0.056733 | |
Southeast (112.5°–157.5°) | 199,209 | 13.49% | 913 | 12.73% | −0.05815 | |
South (157.5°–202.5°) | 182,796 | 12.38% | 1010 | 14.08% | 0.128804 | |
Southwest (202.5°–247.5°) | 169,656 | 11.49% | 1077 | 15.02% | 0.267631 | |
West (247.5°–292.5°) | 167,063 | 11.32% | 1081 | 15.07% | 0.28674 | |
Northwest (292.5°–337.5°) | 177,383 | 12.01% | 844 | 11.77% | −0.02069 | |
Plan Curvature | −0.027–0.0049 | 116,417 | 7.88% | 412 | 5.74% | −0.316689 |
−0.0048–−0.0014 | 330,995 | 22.42% | 1701 | 23.72% | 0.056334 | |
−0.0013–0.0015 | 561,709 | 38.04% | 2940 | 40.99% | 0.074647 | |
0.0016–0.005 | 331,235 | 22.43% | 1628 | 22.70% | 0.011746 | |
0.0051–0.026 | 136,108 | 9.22% | 491 | 6.85% | −0.297538 | |
Profile Curvature | −0.025–−0.005 | 109,963 | 7.45% | 825 | 11.50% | 0.434706 |
−0.004–−0.002 | 332,736 | 22.54% | 1957 | 27.29% | 0.191285 | |
−0.001–0.001 | 611,892 | 41.44% | 2869 | 40.00% | −0.035371 | |
0.002–0.005 | 317,488 | 21.50% | 1292 | 18.01% | −0.177027 | |
0.006–0.071 | 104,385 | 7.07% | 229 | 3.19% | −0.794898 | |
TWI | 1.7–5 | 733,943 | 49.71% | 2972 | 41.44% | −0.181972 |
2.1–6.9 | 458,604 | 31.06% | 2734 | 38.12% | 0.204803 | |
7–9.6 | 190,190 | 12.88% | 846 | 11.80% | −0.088035 | |
9.7–13.8 | 73,221 | 4.96% | 422 | 5.88% | 0.170992 | |
13.9–24.3 | 20,510 | 1.39% | 198 | 2.76% | 0.686823 | |
TRI | 0–6.8 | 229,329 | 15.53% | 1171 | 16.33% | 0.049212 |
6.9–12.7 | 533,731 | 36.15% | 3036 | 42.33% | 0.157161 | |
12.8–18.6 | 514,331 | 34.84% | 2422 | 33.77% | −0.031761 | |
18.7–28.8 | 170,129 | 11.52% | 483 | 6.73% | −0.537784 | |
28.9–107.9 | 27,898 | 1.89% | 60 | 0.84% | −0.815454 | |
LS-Factor | 0–18.1 | 501,137 | 33.94% | 2041 | 28.46% | −0.176255 |
18.2–144.6 | 959,959 | 65.02% | 4948 | 68.99% | 0.059278 | |
144.7–488.1 | 13,703 | 0.93% | 139 | 1.94% | 0.736289 | |
488.2–1554.7 | 1512 | 0.10% | 43 | 0.60% | 1.767196 | |
1554.8–4609.9 | 99 | 0.01% | 1 | 0.01% | 0.732065 | |
Precipitation (m) | 0–100 | 117,012 | 7.93% | 123 | 1.72% | −1.572805 |
100–200 | 258,261 | 17.49% | 1006 | 14.03% | −0.262946 | |
200–500 | 353,546 | 23.95% | 1273 | 17.75% | −0.341595 | |
500–1000 | 335,283 | 22.71% | 2284 | 31.85% | 0.295996 | |
1000–2000 | 412,367 | 27.93% | 2795 | 38.97% | 0.290961 | |
NDVI | −0.41–0.04 | 1329 | 0.09% | 0 | 0.00% | 0 |
−0.03–0.19 | 37,393 | 2.53% | 337 | 4.70% | 0.618068 | |
0.2–0.32 | 64,701 | 4.38% | 935 | 13.04% | 1.090239 | |
0.33–0.41 | 219,242 | 14.85% | 1365 | 19.03% | 0.248202 | |
0.42–0.47 | 563,527 | 38.17% | 2490 | 34.72% | −0.094708 | |
0.48–0.55 | 502,529 | 34.04% | 1588 | 22.14% | −0.429954 | |
0.56–0.84 | 87,748 | 5.94% | 457 | 6.37% | 0.069683 | |
Distance to Road (m) | 0–100 | 189,712 | 12.85% | 2167 | 30.21% | 0.851954 |
100–200 | 136,799 | 9.27% | 422 | 5.88% | −0.457145 | |
200–500 | 307,285 | 20.81% | 1082 | 15.09% | −0.324847 | |
500–1000 | 346,864 | 23.49% | 2659 | 37.07% | 0.453135 | |
1000–2000 | 349,585 | 23.68% | 630 | 8.78% | −0.994665 | |
>2000 | 148,622 | 10.07% | 246 | 3.43% | −1.079712 | |
Distance to River (m) | 0–100 | 58,036 | 3.93% | 538 | 7.50% | 0.646264 |
100–200 | 54,507 | 3.69% | 268 | 3.74% | 0.012127 | |
200–500 | 143,741 | 9.74% | 313 | 4.36% | −0.802341 | |
500–1000 | 196,071 | 13.28% | 449 | 6.26% | −0.751985 | |
1000–2000 | 317,163 | 21.48% | 1766 | 24.62% | 0.136525 | |
>2000 | 706,951 | 47.88% | 3838 | 53.51% | 0.111214 | |
Landcover | Tree cover | 894,102 | 60.56% | 3496 | 48.75% | −0.218287 |
Shrubland | 62 | 0.00% | 0 | 0.00% | 0 | |
Grassland | 474,735 | 32.15% | 2700 | 37.65% | 0.158476 | |
Cropland | 24,995 | 1.69% | 72 | 1.00% | −0.51801 | |
Built-up | 49,604 | 3.36% | 404 | 5.63% | 0.514295 | |
Bare | 29,827 | 2.02% | 500 | 6.97% | 1.164069 | |
Water | 2248 | 0.15% | 0 | 0.00% | 0 | |
Stratigraphic Unit | C | 207,927 | 14.08% | 715 | 9.97% | −0.387618 |
J | 259,323 | 17.56% | 470 | 6.55% | −1.028055 | |
Jx | 582,921 | 39.48% | 4786 | 66.73% | 0.482686 | |
O | 62,197 | 4.21% | 302 | 4.21% | −0.042593 | |
P | 71,121 | 4.82% | 676 | 9.43% | 0.629097 | |
Qb | 161,641 | 10.95% | 245 | 3.42% | −1.206833 | |
Qp | 129,310 | 8.76% | 287 | 4.00% | −0.825443 | |
∈ | 2029 | 0.14% | 0 | 0.00% | 0 | |
Distance to Fault (m) | 0–100 | 44,805 | 3.03% | 311 | 4.34% | 0.383891 |
100–200 | 45,550 | 3.09% | 268 | 3.74% | 0.218595 | |
200–500 | 130,518 | 8.84% | 922 | 12.86% | 0.401452 | |
500–1000 | 199,420 | 13.51% | 1464 | 20.41% | 0.439933 | |
1000–2000 | 348,381 | 23.60% | 1848 | 25.77% | 0.114981 | |
>2000 | 707,827 | 47.94% | 2359 | 32.89% | −0.349788 | |
Distance to Mine Origin (m) | 0–100 | 9670 | 0.65% | 152 | 2.12% | 1.201271 |
100–200 | 25,462 | 1.72% | 375 | 5.23% | 1.136157 | |
200–500 | 120,030 | 8.13% | 1146 | 15.98% | 0.702709 | |
500–1000 | 251,046 | 17.00% | 1528 | 21.31% | 0.252497 | |
1000–2000 | 483,530 | 32.75% | 2685 | 37.44% | 0.160741 | |
>2000 | 627,062 | 42.47% | 1286 | 17.93% | −0.835335 |
References
- Dowling, C.A.; Santi, P.M. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 2014, 71, 203–227. [Google Scholar] [CrossRef]
- Gatto, A.; Clò, S.; Martellozzo, F.; Segoni, S. Tracking a Decade of Hydrogeological Emergencies in Italian Municipalities. Data 2023, 8, 151. [Google Scholar] [CrossRef]
- Coussot, P.; Meunier, M. Recognition, classification and mechanical description of debris flows. Earth-Sci. Rev. 1996, 40, 209–227. [Google Scholar] [CrossRef]
- Glade, T.; Anderson, M.G.; Crozier, M.J. (Eds.) Landslide Hazard and Risk; Wiley: Chichester, UK, 2005; Volume 807. [Google Scholar]
- Zhang, Y.; Meng, X.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides 2018, 15, 1299–1315. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Chen, G.; Qiao, L.; Zeng, R.; Chang, J. Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 2016, 13, 1273–1284. [Google Scholar] [CrossRef]
- Mishra, V.; Jain, K. Satellite based assessment of artificial reservoir induced landslides in data scarce environment: A case study of Baglihar reservoir in India. J. Appl. Geophys. 2022, 205, 104754. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Wang, S.; Xu, L.; Peng, J. Monitoring and Stability Analysis of the Deformation in the Woda Landslide Area in Tibet, China by the DS-InSAR Method. Remote Sens. 2022, 14, 532. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhang, Q.; Alamdari, M.M. Assessment of the Accuracy Among the Common Persistent Scatterer and Distributed Scatterer Based on SqueeSAR Method. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1877–1881. [Google Scholar] [CrossRef]
- Ahmadi, S.; Afshar, R.S.; Fathollahy, M.; Vakili, K.N. Identification of land subsidence hazard in asadabad plain using the PS-InSAR method and its relationship with the geological characteristics. Nat. Hazards 2023, 117, 1157–1178. [Google Scholar] [CrossRef]
- Chang, M.; Sun, W.; Xu, H.; Tang, L. Identification and deformation analysis of potential landslides after the Jiuzhaigou earthquake by SBAS-InSAR. Environ. Sci. Pollut. Res. 2023, 30, 39093–39106. [Google Scholar] [CrossRef] [PubMed]
- Crippa, C.; Valbuzzi, E.; Frattini, P.; Crosta, G.B.; Spreafico, M.C.; Agliardi, F. Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides 2021, 18, 2445–2463. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 2021, 35, 321–347. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Yuan, G. Evaluation of Geological Hazard Susceptibility Based on the Regional Division Information Value Method. ISPRS Int. J. Geo-Inf. 2023, 12, 20. [Google Scholar] [CrossRef]
- Wang, W.; He, Z.; Han, Z.; Li, Y.; Dou, J.; Huang, J. Mapping the susceptibility to landslides based on the deep belief network: A case study in Sichuan Province, China. Nat. Hazards 2020, 103, 3239–3261. [Google Scholar] [CrossRef]
- Zhu, Z.; Gan, S.; Yuan, X.; Zhang, J. Landslide Susceptibility Mapping with Integrated SBAS-InSAR Technique: A Case Study of Dongchuan District, Yunnan (China). Sensors 2022, 22, 21. [Google Scholar] [CrossRef]
- Devara, M.; Tiwari, A.; Dwivedi, R. Landslide susceptibility mapping using MT-InSAR and AHP enabled GIS-based multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2021, 12, 675–693. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Sezer, E.; Nefeslioglu, H.; Osna, T. An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software. Comput. Geosci. 2017, 98, 26–37. [Google Scholar] [CrossRef]
- Bao, S.; Liu, J.; Wang, L.; Zhao, X. Application of Transformer Models to Landslide Susceptibility Mapping. Sensors 2022, 22, 20. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, J.; Mu, J.; Zheng, J.; Zhan, J.; Wang, J.; Fu, Y. Evaluation of landslide susceptibility of the Ya’an–Linzhi section of the Sichuan–Tibet Railway based on deep learning. Environ. Earth Sci. 2022, 81, 18. [Google Scholar] [CrossRef]
- Qazi, A.; Singh, K.; Vishwakarma, D.K.; Abdo, H.G. GIS based landslide susceptibility zonation mapping using frequency ratio, information value and weight of evidence: A case study in Kinnaur District HP India. Bull. Eng. Geol. Environ. 2023, 82, 24. [Google Scholar] [CrossRef]
- Cui, K.; Lu, D.; Li, W. Comparison of landslide susceptibility mapping based on statistical index, certainty factors, weights of evidence and evidential belief function models. Geocarto Int. 2017, 32, 935–955. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Y.; Li, W.; He, J.; Wu, Z. Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomat. Nat. Hazards Risk 2019, 10, 820–835. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef]
- Huang, W.; Ding, M.; Li, Z.; Zhuang, J.; Yang, J.; Li, X.; Meng, L.; Zhang, H.; Dong, Y. An Efficient User-Friendly Integration Tool for Landslide Susceptibility Mapping Based on Support Vector Machines: SVM-LSM Toolbox. Remote Sens. 2022, 14, 22. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Du, J.; Zhang, L.; Song, Y.; Sun, G. Multi-geohazards susceptibility mapping based on machine learning—A case study in Jiuzhaigou, China. Nat. Hazards 2020, 102, 851–871. [Google Scholar] [CrossRef]
- Habumugisha, J.M.; Chen, N.; Rahman, M.; Islam, M.; Ahmad, H.; Elbeltagi, A.; Sharma, G.; Liza, S.N.; Dewan, A. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability 2022, 14, 1734. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Dikshit, A.; Al-Katheri, M.M.; Matar, S.S.; Mahdi, A.M. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: Comparison of their performance at Asir Region, KSA. Bull. Eng. Geol. Environ. 2022, 81, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Ji, Y. Deformation and metamorphic characteristics of Carboniferous Permian coal bearing formation and related geological hazards in Xishan (Western Hills) Beijing. Beijing Geol. 2004, 16, 1–17. [Google Scholar]
- Jiang, H.; Balz, T.; Li, J.; Mishra, V. Preliminary Investigation of Sudden Ground Subsidence and Building Tilt in Balitai Town, Tianjin City, on 31 May. Remote Sens. 2023, 15, 4891. [Google Scholar] [CrossRef]
- Kundal, S.; Chowdhury, A.; Bhardwaj, A.; Garg, P.K.; Mishra, V. GeoBIA-based semi-automated landslide detection using UAS data: A case study of Uttarakhand Himalayas. Proc. SPIE 2023, 123271, 321–329. [Google Scholar] [CrossRef]
- Jiao, R.; Wang, S.; Yang, H.; Guo, X.; Han, J.; Pei, X.; Yan, C. Comprehensive Remote Sensing Technology for Monitoring Landslide Hazards and Disaster Chain in the Xishan Mining Area of Beijing. Remote Sens. 2022, 14, 20. [Google Scholar] [CrossRef]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Gharechaee, H.; Samani, A.N.; Sigaroodi, S.K.; Baloochiyan, A.; Moosavi, M.S.; Hubbart, J.A.; Sadeghi, S.M.M. Land Subsidence Susceptibility Mapping Using Interferometric Synthetic Aperture Radar (InSAR) and Machine Learning Models in a Semiarid Region of Iran. Land 2023, 12, 843. [Google Scholar] [CrossRef]
- Polat, A. An innovative, fast method for landslide susceptibility mapping using GIS-based LSAT toolbox. Environ. Earth Sci. 2021, 80, 217. [Google Scholar] [CrossRef]
- Luti, T.; Segoni, S.; Catani, F.; Munafò, M.; Casagli, N. Integration of Remotely Sensed Soil Sealing Data in Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 1486. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex land-scape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric sar images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- O’Brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar] [CrossRef]
- Liu, M.; Xu, B.; Li, Z.; Mao, W.; Zhu, Y.; Hou, J.; Liu, W. Landslide Susceptibility Zoning in Yunnan Province Based on SBAS-InSAR Technology and a Random Forest Model. Remote Sens. 2023, 15, 2864. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Xu, S.; Zhou, T.; Ma, Y.; Zhang, F.; Konečný, M. Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province. Int. J. Image Data Fusion 2021, 12, 349–366. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.-W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2021, 305, 114367. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Bianchini, S.; Cigna, F.; Righini, G.; Proietti, C.; Casagli, N. Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry. Environ. Earth Sci. 2012, 67, 1155–1172. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W.; Xu, X.; Zhang, Z.; Wu, X. Evaluation of neural network models for landslide susceptibility assessment. Int. J. Digit. Earth 2022, 15, 934–953. [Google Scholar] [CrossRef]
- Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment. Remote Sens. 2021, 13, 31. [Google Scholar] [CrossRef]
- Yu, H.; Pei, W.; Zhang, J.; Chen, G. Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models. Remote Sens. 2023, 15, 20. [Google Scholar] [CrossRef]
Influencing Factor | TOL | VIF | Influencing Factor | TOL | VIF |
---|---|---|---|---|---|
Elevation | 0.796 | 1.256 | Precipitation | 0.760 | 1.315 |
Slope | 0.501 | 1.995 | NDVI | 0.693 | 1.422 |
Aspect | 0.918 | 1.090 | Distance to Road | 0.869 | 1.151 |
Plan Curvature | 0.943 | 1.060 | Distance to River | 0.908 | 1.101 |
Profile Curvature | 0.843 | 1.186 | Landcover | 0.736 | 1.359 |
TWI | 0.773 | 1.293 | Stratigraphic Unit | 0.690 | 1.448 |
TRI | 0.496 | 2.016 | Distance to Fault | 0.820 | 1.090 |
LS-Factor | 0.792 | 1.263 | Distance to Mine Origin | 0.740 | 1.352 |
RF | SVM | CNN | RNN | ||||
---|---|---|---|---|---|---|---|
n_estimators | 10 | C | 100 | Learning rate | 0.001 | Learning rate | 0.001 |
max_depth | 50 | Gamma | 0.0002 | Epoch | 512 | Epoch | 512 |
min_samples_split | 10 | Kernel function | rbf | Batch_size | 256 | Batch_size | 256 |
min_samples_leaf | 50 | Activation function | sigmoid | Activation function | tanh |
Models Used to Compare | Pearson Correlation Coefficient | Models Used to Compare | Pearson Correlation Coefficient |
---|---|---|---|
RF and SVM | 0.792 | SVM and CNN | 0.595 |
RF and CNN | 0.692 | SVM and RNN | 0.783 |
RF and RNN | 0.709 | CNN and RNN | 0.532 |
Evaluation Indicators | RF | SVM | CNN | RNN |
---|---|---|---|---|
Recall | 0.753 | 0.747 | 0.861 | 0.708 |
F1_score | 0.774 | 0.776 | 0.788 | 0.756 |
MCC | 0.561 | 0.566 | 0.592 | 0.547 |
Runtime | 6.4 s | 561 s | 555 s | 506 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Yang, H.; Zeng, W.; Liu, P.; Wang, Y. Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR. Remote Sens. 2023, 15, 5316. https://doi.org/10.3390/rs15225316
Lu Z, Yang H, Zeng W, Liu P, Wang Y. Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR. Remote Sensing. 2023; 15(22):5316. https://doi.org/10.3390/rs15225316
Chicago/Turabian StyleLu, Zhaowei, Honglei Yang, Wei Zeng, Peng Liu, and Yuedong Wang. 2023. "Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR" Remote Sensing 15, no. 22: 5316. https://doi.org/10.3390/rs15225316
APA StyleLu, Z., Yang, H., Zeng, W., Liu, P., & Wang, Y. (2023). Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR. Remote Sensing, 15(22), 5316. https://doi.org/10.3390/rs15225316