Domain-Invariant Feature and Generative Adversarial Network Boundary Enhancement for Multi-Source Unsupervised Hyperspectral Image Classification
Abstract
:1. Introduction
- A domain-invariant feature unfolding methodology is proposed based on MMD distance-weighted Fourier feature transformation. It achieves intraclass and interclass invariant representations across multiple source domains. The primary objective of this approach is to maximize the differentiation of the invariant features, promoting robustness in various domain settings.
- A feature space boundary reinforcement algorithm is introduced for the MUDA methodologies. Utilizing a GAN constrained by domain-invariant features generates synthetic samples to reinforce the distribution of the feature space boundary. This reinforcement significantly enhances the classification accuracy within the target domain.
- Extensive experiments validate the efficacy of the algorithm proposed in this work on RGB and HSI datasets, proving its capability in successfully accomplishing the task of multi-source unsupervised classification of hyperspectral images.
2. Materials and Methods
2.1. Problem Description
2.2. Algorithm Overview
2.3. Source Domain-Invariant Feature Extraction Based on a Weighted Fourier Transform
2.3.1. Learning Intraclass Invariant Features
2.3.2. Exploring Interclass Invariant Features
2.4. Target Domain Classification Based on Feature Space Boundary Enhancement
2.4.1. Domain Boundary Reinforcement
2.4.2. Domain-Specific Classifier Alignment
3. Experiments
3.1. Target Domain Classification Based on Feature Space Boundary Enhancement
3.2. HSI Image Dataset Classification Task
3.2.1. Invariant Feature Network Performance Analysis
3.2.2. Performance Analysis of the MUDA Sample Transfer Algorithm
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Lin, Z.; Xing, Z.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 2094–2107. [Google Scholar] [CrossRef]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T.; Lu, W.; Chen, Y.; Zeng, W.; Yu, P. Generalizing to unseen domains: A survey on domain generalization. IEEE Trans. Knowl. Data Eng. 2022, 8, 8052–8072. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. (TKDE) 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Xia, M.; Yuan, G.; Yang, L.; Xia, K.; Ren, Y.; Shi, Z.; Zhou, H. Few-Shot Hyperspectral Image Classification Based on Convolutional Residuals and SAM Siamese Networks. Electronics 2023, 12, 3415. [Google Scholar] [CrossRef]
- Huang, J.; Gretton, A.; Borgwardt, K.M.; Scholkopf, B.; Smola, A.J. Correcting sample selection bias by unlabeled data. Neural Inf. Process. Syst. 2007, 19, 601–608. [Google Scholar]
- Jiang, J.; Zhai, C. Instance Weighting for Domain Adaptation in NLP; Association for Computational Linguistics (ACL): Prague, Czech Republic, 2007; pp. 264–271. [Google Scholar]
- Fernando, B.; Habrard, A.; Sebban, M.; Tuytelaars, T. Unsupervised visual domain adaptation using subspace alignment. In Proceedings of the International Conference on Computer Vision (ICCV), Sydney, NSW, Australia, 1–8 December 2013; pp. 2960–2967. [Google Scholar]
- Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 443–450. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, NSW, Australia, 17 August 2017; pp. 2208–2217. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 1, p. 4. [Google Scholar]
- Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.-Y.; Isola, P.; Saenko, K.; Efros, A.A.; Darrell, T. Cycada: Cycle-consistent adversarial domain adaptation. In Proceedings of the International Conference on Machine Learning, Montreal, QC, Canada, 10–15 July 2018. [Google Scholar]
- Xu, Y.; Kan, M.; Shan, S.; Chen, X. Mutual learning of joint and separate domain alignments for multi-source domain adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikaloa, HI, USA, 15 August 2022. [Google Scholar]
- Liu, H.; Shao, M.; Fu, Y. Structure-preserved multi-source domain adaptation. In Proceedings of the 16th International Conference on Data Mining, Barcelona, Spain, 12–15 December 2016; pp. 1059–1064. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation. In Proceedings of the Advances in Neural Information Processing Systems 19, Vancouver, BC, Canada, 4–7 December 2006. [Google Scholar]
- Hu, J.; Lu, J.; Tan, Y.-P.; Zhou, J. Deep transfer metric learning. IEEE Trans. Image Process. 2016, 25, 5576–5588. [Google Scholar] [CrossRef] [PubMed]
- Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Wortman, J. Learning bounds for domain adaptation. In Proceedings of the Neural Information Processing Systems 20, Vancouver, BC, Canada, 3–6 December 2008; pp. 129–136. [Google Scholar]
- Mansour, Y.; Mohri, M.; Rostamizadeh, A. Domain adaptation with multiple sources. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 10–11 December 2009; pp. 1041–1048. [Google Scholar]
- Xu, R.; Chen, Z.; Zuo, W.; Yan, J.; Lin, L. Deep cocktail network: Multi-source unsupervised domain adaptation with category shift. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3964–3973. [Google Scholar]
- Zhao, H.; Zhang, S.; Wu, G.; Gordon, G.J. Multiple source domain adaptation with adversarial learning. In Proceedings of the ICLR, Vancouver, BC, Canada, 15 February 2018. [Google Scholar]
- Schlachter, P.; Liao, Y.; Yang, B. Deep One-Class Classification Using Intra-Class Splitting. In Proceedings of the 2019 IEEE Data Science Workshop (DSW), Minneapolis, MN, USA, 16 September 2019. [Google Scholar] [CrossRef]
- Schlachter, P.; Liao, Y.; Yang, B. Open-Set Recognition Using Intra-Class Splitting. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), Coruna, Spain, 2–6 September 2019. [Google Scholar] [CrossRef]
- Li, X.; Fei, J.; Qi, Z.; Lv, Z.; Jiang, H. Open Set Recognition for Encrypted Traffic using Intra-class Partition and Boundary Sample Generation. In Proceedings of the 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 16–18 December 2022; Volume 5. [Google Scholar]
- Neal, L.; Olson, M.; Fern, X.; Wong, W.K.; Li, F. Open set learning with counterfactual images. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Xia, Z.; Wang, P.; Dong, G. Adversarial Motorial Prototype Framework for Open Set Recognition. arXiv 2021, arXiv:2108.04225. [Google Scholar] [CrossRef]
- Johansson, F.D.; Sontag, D.; Ranganath, R. Support and invertibility in domain-invariant representations. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, Okinawa, Japan, 16–18 April 2019; pp. 527–536. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Wortman Vaughan, J. A theory of learning from different domains. Mach. Learn. 2010, 79, 151–175. [Google Scholar] [CrossRef]
- Zhao, H.; Des Combes, R.T.; Zhang, K.; Gordon, G. On learning invariant representations for domain adaptation. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 7523–7532. [Google Scholar]
- Li, Y.; Gong, M.; Tian, X.; Liu, T.; Tao, D. Domain generalization via conditional invariant representations. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 29 April 2018; Volume 32. [Google Scholar]
- Motiian, S.; Piccirilli, M.; Adjeroh, D.A.; Doretto, G. Unified deep supervised domain adaptation and generalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5715–5725. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 2096–2130. [Google Scholar]
- Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; Tao, D. Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 624–639. [Google Scholar]
- Rahman, M.M.; Fookes, C.; Baktashmotlagh, M.; Sridharan, S. Correlation-aware adversarial domain adaptation and generalization. Pattern Recognit. 2020, 100, 107124. [Google Scholar] [CrossRef]
- Liu, C.; Sun, X.; Wang, J.; Tang, H.; Li, T.; Qin, T.; Chen, W.; Liu, T. Learning causal semantic representation for out-of-distribution prediction. In Proceedings of the Neural Information Processing Systems, Virtual, 6–14 December 2021. [Google Scholar]
- Piratla, V.; Netrapalli, P.; Sarawagi, S. Efficient domain generalization via commonspecific low-rank decomposition. In Proceedings of the International Conference on Machine Learning, Virtual, 12–18 July 2020; pp. 7728–7738. [Google Scholar]
- Hong, X.; Yong, W.; Zhi, W.; Yi, W. Embedding-based complex feature value coupling learning for detecting outliers in non-iid categorical data. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5541–5548. [Google Scholar]
- Shankar, S.; Piratla, V.; Chakrabarti, S.; Chaudhuri, S.; Jyothi, P.; Sarawagi, S. Generalizing across domains via cross-gradient training. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Balaji, Y.; Sankaranarayanan, S.; Chellappa, R. Metareg: Towards domain generalization using me-ta-regularization. Adv. Neural Inf. Process. Syst. 2018, 31, 998–1008. [Google Scholar]
- Yang, Y.; Soatto, S. Fda: Fourier domain adaptation for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4085–4095. [Google Scholar]
- Yang, Y.; Lao, D.; Sundaramoorthi, G.; Soatto, S. Phase consistent ecological domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9011–9020. [Google Scholar]
- Nussbaumer, H.J. The fast fourier transform. In Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1981; pp. 80–111. [Google Scholar]
- Oppenheim, A.; Lim, J.; Kopec, G.; Pohlig, S.C. Phase in speech and pictures. In Proceedings of the ICASSP’79 IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, DC, USA, 2–4 April 1979; Volume 4, pp. 632–637. [Google Scholar]
- Oppenheim, A.V.; Lim, J.S. The importance of phase in signals. Proc. IEEE 1981, 69, 529–541. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, R.; Zhang, Y.; Wang, Y.; Tian, Q. A fourier-based framework for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14383–14392. [Google Scholar]
- Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
- Gretton, K.M.; Borgwardt, M.J.; Rasch, M.J.; Schölkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Wang, J.; Feng, W.; Chen, Y.; Yu, H.; Huang, M.; Yu, P.S. Visual domain adaptation with manifold embedded distribution alignment. In Proceedings of the ACM Multimedia Conference (MM), Amsterdam, The Netherlands, 12–15 June 2018; pp. 402–410. [Google Scholar]
- Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting visual category models to new domains. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; pp. 213–226. [Google Scholar]
- Zhu, Y.; Zhuang, F.; Wang, D. Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 5989–5996. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1180–1189. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Unsupervised domain adaptation with residual transfer networks. In Proceedings of the Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 136–144. [Google Scholar]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, D.; Tang, Y.; Zhao, Y.; Ren, J.; Sun, H.P. PSSA: PCA-Domain Superpixelwise Singular Spectral Analysis for Unsupervised Hyperspectral Image Classification. Remote Sens. 2023, 15, 890. [Google Scholar] [CrossRef]
- Zhou, J.; Sheng, J.; Fan, J.; Ye, P.; He, T.; Wang, B.; Chen, T. When Hyperspectral Image Classification Meets Diffusion Models: An Unsupervised Feature Learning Framework. arXiv 2023, arXiv:2306.08964. [Google Scholar]
- Roy, S.K.; Krishna, G.; Dubey, S.; Chaudhuri, B.B. HybridSN: Exploring 3D-2D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
Method | A, W→D | A, D→W | A, D→W | Avg |
---|---|---|---|---|
ResNet | 98.31 | 95.73 | 61.88 | 85.34 |
DDC | 97.22 | 94.05 | 66.73 | 86.03 |
DAN | 98.60 | 96.82 | 66.92 | 87.42 |
D-CORAL | 98.31 | 97.02 | 66.43 | 87.22 |
RevGrad | 98.70 | 97.12 | 66.92 | 87.62 |
RTN | 98.41 | 95.83 | 65.54 | 86.63 |
DCTN | 98.31 | 97.22 | 63.56 | 86.33 |
MFSAN | 98.51 | 97.52 | 71.97 | 89.30 |
MDSNI | 99.70 | 99.20 | 73.80 | 91.60 |
Method | I, C→P | I, P→C | P, C→I | Avg |
---|---|---|---|---|
ResNet | 74.05 | 90.59 | 83.06 | 82.57 |
DDC | 77.81 | 90.19 | 84.84 | 82.96 |
DAN | 76.82 | 92.37 | 91.28 | 86.82 |
D-CORAL | 76.33 | 92.66 | 90.78 | 86.63 |
RevGrad | 77.12 | 92.76 | 90.88 | 86.92 |
RTN | 77.81 | 94.35 | 86.03 | 85.04 |
DCTN | 74.25 | 94.74 | 89.40 | 86.13 |
MFSAN | 78.31 | 94.45 | 92.66 | 88.51 |
MDSNI | 79.90 | 96.36 | 94.55 | 90.30 |
Method | C, P, R→A | A, P, R→C | A, C, R→P | A, C, P→R | Avg |
---|---|---|---|---|---|
ResNet | 64.65 | 49.10 | 78.90 | 74.65 | 66.83 |
DDC | 63.46 | 50.29 | 77.42 | 74.25 | 66.33 |
DAN | 67.82 | 88.51 | 78.21 | 81.68 | 71.68 |
D-CORAL | 67.42 | 58.01 | 78.71 | 81.87 | 71.48 |
RevGrad | 67.72 | 58.51 | 78.71 | 81.87 | 71.68 |
MFSAN | 71.38 | 61.38 | 79.50 | 80.98 | 73.36 |
MDSNI | 72.83 | 62.63 | 81.11 | 82.63 | 74.85 |
Training Sample Rate | Spe-EMAP SVM | JS SAE | Spe-SSAE | EMAP-SSAE | Spe-EMAP SSAE | MDSNI |
---|---|---|---|---|---|---|
40% | 93.66% | 91.93% | 90.85% | 98.05% | 98.76% | 99.29% |
50% | 94.58% | 92.64% | 91.43% | 98.30% | 98.85% | 99.52% |
60% | 95.01% | 92.83% | 91.58% | 98.43% | 98.94% | 99.47% |
70% | 95.36% | 93.64% | 92.28% | 98.62% | 99.06% | 99.54% |
Training Sample Rate | Spe-EMAP SVM | JS SAE | Spe-SSAE | EMAP-SSAE | Spe-EMAP SSAE | MDSNI |
---|---|---|---|---|---|---|
40% | 98.77% | 98.38% | 99.27% | 99.42% | 99.69% | 99.29% |
50% | 99.04% | 98.55% | 99.34% | 99.69% | 99.79% | 99.52% |
60% | 99.10% | 98.64% | 99.46% | 99.74% | 99.85% | 99.47% |
70% | 99.16% | 98.73% | 99.62% | 99.76% | 99.87% | 99.54% |
Training Sample Rate | Spe-EMAP SVM | JS SAE | Spe-SSAE | EMAP-SSAE | Spe-EMAP SSAE | MDSNI |
---|---|---|---|---|---|---|
40% | 93.11% | 90.89% | 89.23% | 96.12% | 96.82% | 97.46% |
50% | 94.07% | 91.72% | 89.43% | 96.23% | 96.93% | 97.68% |
60% | 94.72% | 91.81% | 89.48% | 96.59% | 97.00% | 97.90% |
70% | 95.11% | 92.36% | 89.71% | 96.76% | 97.11% | 98.06% |
Method | Pavia University | Pavia Center | Salinas Valley |
---|---|---|---|
MDSNI | 99.23% | 99.54% | 98.06% |
PSSA [53] | 97.92% | 97.49% | 95.12% |
Diff-HIS [54] | 96.38% | 96.53% | 96.10% |
Road (%) | Grass (%) | Tree (%) | Roofs (%) | OA (%) | Kappa | |
---|---|---|---|---|---|---|
SVM | 73.73 | 76.18 | 60.47 | 54.95 | 66.28 | 0.5494 |
3D-SAE | 76.94 | 79.08 | 68.81 | 67.33 | 73.01 | 0.6398 |
Deep CORAL | 77.88 | 82.22 | 71.84 | 67.21 | 74.7 | 0.6627 |
DAN | 79.72 | 85.9 | 75.49 | 76.04 | 79.6 | 0.7275 |
UHDAC | 81.89 | 98.53 | 72.56 | 81.08 | 83.94 | 0.7856 |
MDSNI | 88.53 | 89.93 | 83.67 | 81.29 | 85.85 | 0.8111 |
Road (%) | Grass (%) | Tree (%) | Roofs (%) | OA (%) | Kappa | |
---|---|---|---|---|---|---|
SVM | 71.16 | 79.74 | 63.63 | 68.3 | 68.43 | 0.5731 |
3D-SAE | 75.87 | 85.52 | 69.43 | 71.86 | 74.9 | 0.6561 |
Deep CORAL | 80.35 | 85.02 | 73.31 | 75.33 | 77.99 | 0.6971 |
DAN | 85.86 | 86.41 | 76.59 | 79.21 | 81.65 | 0.7466 |
UHDAC | 83.13 | 93.49 | 84.84 | 83.09 | 85.4 | 0.7988 |
MDSNI | 87.56 | 93.15 | 86.18 | 85.3 | 87.41 | 0.8266 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Han, B.; Li, J.; Du, Y. Domain-Invariant Feature and Generative Adversarial Network Boundary Enhancement for Multi-Source Unsupervised Hyperspectral Image Classification. Remote Sens. 2023, 15, 5306. https://doi.org/10.3390/rs15225306
Xu T, Han B, Li J, Du Y. Domain-Invariant Feature and Generative Adversarial Network Boundary Enhancement for Multi-Source Unsupervised Hyperspectral Image Classification. Remote Sensing. 2023; 15(22):5306. https://doi.org/10.3390/rs15225306
Chicago/Turabian StyleXu, Tuo, Bing Han, Jie Li, and Yuefan Du. 2023. "Domain-Invariant Feature and Generative Adversarial Network Boundary Enhancement for Multi-Source Unsupervised Hyperspectral Image Classification" Remote Sensing 15, no. 22: 5306. https://doi.org/10.3390/rs15225306
APA StyleXu, T., Han, B., Li, J., & Du, Y. (2023). Domain-Invariant Feature and Generative Adversarial Network Boundary Enhancement for Multi-Source Unsupervised Hyperspectral Image Classification. Remote Sensing, 15(22), 5306. https://doi.org/10.3390/rs15225306