An Optimal Polarization SAR Three-Component Target Decomposition Based on Semi-Definite Programming
Abstract
:1. Introduction
2. PolSAR Coherency Matrix
3. Scattering Models and OAC
3.1. Scattering Models
3.2. OAC
4. Optimal Decomposition with Nonnegative Power Constraint
4.1. Decomposition Model
4.2. Model-Based Optimization Problem
- (1)
- After subtracting the volume scattering contribution from the observed coherency matrix, the remainder coherency matrix must be at most rank-2;
- (2)
- After subtracting any linear combination of basic scattering mechanisms, the remainder coherency matrix must be Hermitian positive semi-definite, i.e., the eigenvalues of the remainder coherency matrix must be real and nonnegative.
4.3. Solution of the Optimization Problem
5. Experimental Results and Analysis
- (1)
- Ability to suppress the volume scattering power as well as the improvement of the double-bounce scattering and odd-bounce scattering.
- (2)
- Reduction in negative scattering power pixels, in fact, the proposed method avoids negative energy in principle.
5.1. AIRSAR L-Band PolSAR Data Set
5.2. GaoFen-3(GF-3) C-Band PolSAR Data Set
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, S.; Li, Y.; Wang, X.; Xiao, S.; Sato, M. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal Process. Mag. 2014, 31, 79–89. [Google Scholar] [CrossRef]
- Wang, N.; Shi, G.; Liu, L.; Zhao, L.; Kuang, G. Polarimetric SAR target detection using the reflection symmetry. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1104–1108. [Google Scholar] [CrossRef]
- Marino, A. A notch filter for ship detection with polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1219–1232. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Xi, Y.; Lang, H.; Tao, Y.; Huang, L.; Pei, Z. Four-component model-based decomposition for ship targets using polsar data. Remote Sens. 2017, 9, 621. [Google Scholar] [CrossRef]
- Krogager, E. New decomposition of the radar target scattering matrix. Electron. Lett. 1990, 26, 1525–1527. [Google Scholar] [CrossRef]
- Cameron, W.L.; Leung, L.K. Feature motivated polarization scattering matrix decomposition. In Proceedings of the IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 549–557. [Google Scholar]
- Cameron, W.L.; Rais, H. Conservative polarimetric scatterers and their role in incorrect extensions of the cameron decomposition. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3506–3516. [Google Scholar] [CrossRef]
- Cameron, W.L.; Rais, H. Derivation of a signed cameron decomposition asymmetry parameter and relationship of cameron to huynen decomposition parameters. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1677–1688. [Google Scholar] [CrossRef]
- Cameron, W.L.; Rais, H. Polarization scatterer feature metric space. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3638–3647. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Maurya, H.; Panigrahi, R. PolSAR coherency matrix optimization through selective unitary rotations for model-based decomposition scheme. IEEE Geosci. Remote Sens. Lett. 2019, 16, 658–662. [Google Scholar] [CrossRef]
- An, W.; Lin, M. A reflection symmetry approximation of multilook polarimetric sar data and its application to freeman–durden decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3649–3660. [Google Scholar] [CrossRef]
- Maurya, H.; Bhattacharya, A.; Mishra, A.; Panigrahi, R. Hybrid three-component scattering power characterization from polarimetric sar data isolating dominant scattering mechanisms. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci. Remote Sens. Lett. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Yang, J. Ship detection using polarization cross-entropy. IEEE Geosci. Remote Sens. Lett. 2009, 6, 723–727. [Google Scholar] [CrossRef]
- An, W.; Lin, M. Generalized Polarimetric Entropy: Polarimetric Information Quantitative Analyses of Model-Based Incoherent Polarimetric Decomposition. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2041–2057. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Liu, X. Demonstration and analysis of an extended adaptive general four-component decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2573–2586. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Y.-Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2351–2364. [Google Scholar]
- Gulab, S.; Malik, R.; Mohanty, S. Seven component scattering power decomposition of POLSAR coherency matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8382. [Google Scholar]
- Kusano, S.; Takahashi, K.; Sato, M. Volume scattering power constraint based on the principal minors of the coherency matrix. IEEE Geosci. Remote Sens. Lett. 2014, 11, 361–365. [Google Scholar] [CrossRef]
- Van Zyl, J.J.; Arii, M.; Kim, Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3452–3459. [Google Scholar] [CrossRef]
- Lee, J.S.; Ainsworth, T.L.; Wang, Y. Generalized polarimetric model-based decompositions using incoherent scattering models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2474–2491. [Google Scholar] [CrossRef]
- Lim, Y.X.; Burgin, M.S.; Van Zyl, J.J. An optimal nonnegative eigenvalue decomposition for the freeman and durden three-component scattering model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2167–2176. [Google Scholar] [CrossRef]
- Arii, M.; Van Zyl, J.J.; Kim, Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1104–1113. [Google Scholar] [CrossRef]
- An, W.; Cui, Y.; Yang, J. Three-component model-based decomposition for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar]
- Neumann, M.; Ferro-Famil, L.; Reigber, A. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1086–1104. [Google Scholar] [CrossRef]
- Arii, M.; Van Zyl, J.J.; Kim, Y. A general characterization for polarimetric scattering from vegetation canopies. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3349–3357. [Google Scholar] [CrossRef]
- Hajnsek, I.; Jagdhuber, T.; Schon, H. Potential of estimating soil moisture under vegetation cover by means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Xiao, S. General polarimetric model-based decomposition for coherency matrix. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1843–1855. [Google Scholar] [CrossRef]
- Xie, Q.; Zhu, J.; Lopez-Sanchez, J.M.; Wang, C.; Fu, H. A Modified General Polarimetric Model-Based Decomposition Method with the Simplified Neumann Volume Scattering Model. IEEE Trans. Geosci. Remote Sens. 2018, 15, 1229–1233. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, W.; Tang, T.; Su, Y. Multiple-component polarimetric decomposition with new volume scattering models for PolSAR urban areas. IET Radar Sonar Navig. 2017, 11, 410–419. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Liang, L. A Mathematical Extension to the General Four-Component Scattering Power Decomposition with Unitary Transformation of Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7772–7789. [Google Scholar] [CrossRef]
- Xiao, J.; Nehorai, A. Joint Transmitter and Receiver Polarization Optimization for Scattering Estimation in Clutter. IEEE Trans. Signal Process. 2009, 57, 4142–4147. [Google Scholar] [CrossRef]
- Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Software. 1999, 11, 625–653. [Google Scholar] [CrossRef]
- Horn, R.; Johnson, C. Matrix Analysis; Cambridge Univ. Press: New York, NY, USA, 1986; Chapter 7. [Google Scholar]
Methods | Patch A | Patch B | Patch C | ||||||
---|---|---|---|---|---|---|---|---|---|
FDD | 13.10 | 52.45 | 34.45 | 37.07 | 36.73 | 26.20 | 62.86 | 21.03 | 16.11 |
NNED | 32.59 | 50.35 | 17.06 | 29.91 | 45.03 | 25.06 | 38.79 | 28.96 | 32.25 |
Proposed method | 9.39 | 56.35 | 34.26 | 13.12 | 51.38 | 35.50 | 48.91 | 30.69 | 20.40 |
Methods | Patch A | Patch B | Patch C | ||||||
---|---|---|---|---|---|---|---|---|---|
OAC | 11.60 | 52.96 | 35.44 | 31.54 | 38.25 | 30.21 | 58.87 | 23.56 | 17.57 |
Proposed method | 9.06 | 62.27 | 28.67 | 17.74 | 48.11 | 34.15 | 47.82 | 31.7 | 20.48 |
Methods | FDD | OAC | Proposed Method |
---|---|---|---|
% of negative power pixels | 72.10 | 57.78 | 0 |
Methods | Patch A | Patch B | ||||
---|---|---|---|---|---|---|
FDD | 28.69 | 65.58 | 5.73 | 44.29 | 39.23 | 16.48 |
NNED | 20.37 | 73.00 | 6.63 | 32.49 | 55.71 | 11.8 |
Proposed method | 5.00 | 85.75 | 9.25 | 15.15 | 63.71 | 21.14 |
Methods | Patch A | Patch B | ||||
---|---|---|---|---|---|---|
OAC | 17.97 | 75.45 | 6.58 | 45.37 | 44.47 | 10.16 |
Proposed method | 14.23 | 76.09 | 9.68 | 29.72 | 57.85 | 12.43 |
Methods | FDD | OAC | Proposed Method |
---|---|---|---|
% of negative power pixels | 20.95 | 12.77 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Suo, Z.; Jiang, P.; Ti, J.; Ding, Z.; Qin, T. An Optimal Polarization SAR Three-Component Target Decomposition Based on Semi-Definite Programming. Remote Sens. 2023, 15, 5292. https://doi.org/10.3390/rs15225292
Wang T, Suo Z, Jiang P, Ti J, Ding Z, Qin T. An Optimal Polarization SAR Three-Component Target Decomposition Based on Semi-Definite Programming. Remote Sensing. 2023; 15(22):5292. https://doi.org/10.3390/rs15225292
Chicago/Turabian StyleWang, Tingting, Zhiyong Suo, Penghui Jiang, Jingjing Ti, Zhiquan Ding, and Tianqi Qin. 2023. "An Optimal Polarization SAR Three-Component Target Decomposition Based on Semi-Definite Programming" Remote Sensing 15, no. 22: 5292. https://doi.org/10.3390/rs15225292
APA StyleWang, T., Suo, Z., Jiang, P., Ti, J., Ding, Z., & Qin, T. (2023). An Optimal Polarization SAR Three-Component Target Decomposition Based on Semi-Definite Programming. Remote Sensing, 15(22), 5292. https://doi.org/10.3390/rs15225292