Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat–Tide–Semantic Segmentation Approach for Mangrove Mapping
Abstract
:1. Introduction
2. Study Areas and Data Sources
2.1. Study Areas
2.2. Data Preprocessing
2.3. Auxiliary Data
2.3.1. Potential Growth Areas of Mangroves
2.3.2. Reference Data Collection
2.3.3. Existing Data Productions
3. Hybrid U-Net for Extracting Mangrove Forests and Evaluation Criteria
3.1. Overview of the Mangrove Extraction Process
3.2. Principle of the U-Net Model
3.3. Hybrid U-Net Based on the Habitat–Tide Semantic Segmentation Approach
- Step 1: Mangrove habitat information
- Step 2: Low tide level acquisition
- Step 3: U-Net model mangrove extraction
3.4. Accuracy Assessment
3.5. Multilevel Interactive Verification
4. Results
4.1. Performance Evaluation of the Hybrid U-Net Model during the Training Period
4.2. Evaluation of the Hybrid U-Net Model’s Mangrove Extraction Accuracy
4.3. Multilevel Interactive Verification of Mangrove Extraction
4.4. Evaluation of the Hybrid U-Net Model with Existing Data Products
5. Discussion
5.1. Stability of the Hybrid U-Net Network Performance
5.2. Advantages of High-Resolution Data Extraction for Mangrove Mapping
5.3. The Limitations of the Hybrid U-Net Network Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, R.L.; Fest, B.; Stokes, D.; Jenkins, C.; Swearer, S.E. The coastal protection and blue carbon benefits of hybrid mangrove living shorelines. J. Environ. Manag. 2023, 331, 117310. [Google Scholar] [CrossRef] [PubMed]
- Shahbudin, S.; Zuhairi, A.; Kamaruzzaman, B.Y. Impact of coastal development on mangrove cover in Kilim river, Langkawi Island, Malaysia. J. For. Res. 2011, 23, 185–190. [Google Scholar] [CrossRef]
- Zhou, H.Z.; Wang, J.F.; Jiang, H.M.; Cai, Z.X.; Tang, G.H.; Ding, S.; Liu, S.T.; Xu, Z.M. Distribution fractions and potential ecological risk assessment of heavy metals in mangrove sediments of the Greater Bay Area. Environ. Sci. Pollut. Res. 2023, 30, 45859–45871. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef]
- Uddin, M.M.; Aziz, A.A.; Lovelock, C.E. Importance of mangrove plantations for climate change mitigation in Bangladesh. Glob. Chang. Biol. 2023, 29, 3331–3346. [Google Scholar] [CrossRef]
- Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrasses and Salt Marshes during 2010–2018. Sensors 2019, 19, 1933. [Google Scholar] [CrossRef]
- Tang, W.; Zheng, M.; Zhao, X.; Shi, J.; Yang, J.; Trettin, C. Big Geospatial Data Analytics for Global Mangrove Biomass and Carbon Estimation. Sustainability 2018, 10, 472. [Google Scholar] [CrossRef]
- Come, J.; Peer, N.; Nhamussua, J.L.; Miranda, N.A.; Macamo, C.C.; Cabral, A.S.; Madivadua, H.; Zacarias, D.; Narciso, J.; Snow, B. A socio-ecological survey in Inhambane Bay mangrove ecosystems: Biodiversity, livelihoods, and conservation. Ocean Coast. Manag. 2023, 244, 106813. [Google Scholar] [CrossRef]
- Rull, V. Rise and fall of Caribbean mangroves. Sci. Total Environ. 2023, 885, 163851. [Google Scholar] [CrossRef]
- Malik, A.; Fensholt, R.; Mertz, O. Mangrove exploitation effects on biodiversity and ecosystem services. Biodivers. Conserv. 2015, 24, 3543–3557. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Wang, Z.; Zhang, Y.; Mao, D.; Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 535–545. [Google Scholar] [CrossRef]
- Su, J.; Friess, D.A.; Gasparatos, A. A meta-analysis of the ecological and economic outcomes of mangrove restoration. Nat. Commun. 2021, 12, 5050. [Google Scholar] [CrossRef] [PubMed]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sens. 2022, 14, 1034. [Google Scholar] [CrossRef]
- Lymburner, L.; Bunting, P.; Lucas, R.; Scarth, P.; Alam, I.; Phillips, C.; Ticehurst, C.; Held, A. Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sens. Environ. 2020, 238, 111185. [Google Scholar] [CrossRef]
- Fu, B.L.; Liang, Y.Y.; Lao, Z.A.; Sun, X.D.; Li, S.Z.; He, H.C.; Sun, W.W.; Fan, D.L. Quantifying scattering characteristics of mangrove species from Optuna-based optimal machine learning classification using multi-scale feature selection and SAR image time series. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103446. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.-Z. 10-m-resolution mangrove maps of China derived from multi-source and multi-temporal satellite observations. ISPRS J. Photogramm. Remote Sens. 2020, 169, 389–405. [Google Scholar] [CrossRef]
- Xia, Q.; Qin, C.Z.; Li, H.; Huang, C.; Su, F.Z.; Jia, M.M. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecol. Indic. 2020, 113, 106196. [Google Scholar] [CrossRef]
- Zhu, B.; Liao, J.; Shen, G. Combining time series and land cover data for analyzing spatio-temporal changes in mangrove forests: A case study of Qinglangang Nature Reserve, Hainan, China. Ecol. Indic. 2021, 131, 108135. [Google Scholar] [CrossRef]
- Cao, J.; Liu, K.; Zhuo, L.; Liu, L.; Zhu, Y.; Peng, L. Combining UAV-based hyperspectral and LiDAR data for mangrove species classification using the rotation forest algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102414. [Google Scholar] [CrossRef]
- Zhao, D.M.; Zhen, J.N.; Zhang, Y.H.; Miao, J.; Shen, Z.; Jiang, X.P.; Wang, J.J.; Jiang, J.C.; Tang, Y.Z.; Wu, G.F. Mapping mangrove leaf area index (LAI) by combining remote sensing images with PROSAIL-D and XGBoost methods. Remote Sens. Ecol. Conserv. 2023, 9, 370–389. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, S.; He, Y.; You, S.; Yang, X.; Gan, Y.; Liu, A. A Fine-Scale Mangrove Map of China Derived from 2-Meter Resolution Satellite Observations and Field Data. ISPRS Int. J. Geo-Inf. 2021, 10, 92. [Google Scholar] [CrossRef]
- Su, X.; Geng, J.; Ma, X.; Wang, H.; Wang, X. Mangrove species classification based on multiple vegetation index extraction and joint sparse representation. Mar. Environ. Sci. 2017, 36, 114–120. [Google Scholar]
- Zhen, J.; Liao, J.; Shen, G. Remote Sensing Monitoring and Analysis on the Dynamics of Mangrove Forests in Qinglan Habor of Hainan Province since 1987. Wetl. Sci. 2019, 17, 44–51. [Google Scholar]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Tsai, Y.L.S. Monitoring 23-year of shoreline changes of the Zengwun Estuary in Southern Taiwan using time-series Landsat data and edge detection techniques. Sci. Total Environ. 2022, 839, 156310. [Google Scholar] [CrossRef]
- Iovan, C.; Kulbicki, M.; Mermet, E. Deep convolutional neural network for mangrove mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1969–1972. [Google Scholar]
- Guo, M.Q.; Yu, Z.Y.; Xu, Y.Y.; Huang, Y.; Li, C.F. ME-Net: A Deep Convolutional Neural Network for Extracting Mangrove Using Sentinel-2A Data. Remote Sens. 2021, 13, 1292. [Google Scholar] [CrossRef]
- Kalinaki, K.; Malik, O.A.; Lai, D.T.C. FCD-AttResU-Net: An improved forest change detection in Sentinel-2 satellite images using attention residual U-Net. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103453. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, J.; Shen, G. Mapping Large-Scale Mangroves along the Maritime Silk Road from 1990 to 2015 Using a Novel Deep Learning Model and Landsat Data. Remote Sens. 2021, 13, 245. [Google Scholar] [CrossRef]
- Cao, K.L.; Zhang, X.L. An Improved Res-UNet Model for Tree Species Classification Using Airborne High-Resolution Images. Remote Sens. 2020, 12, 1128. [Google Scholar] [CrossRef]
- Dong, Y.; Yu, K.; Hu, W. GC-UNet: An Improved UNet Model for Mangrove Segmentation Using Landsat8. In Proceedings of the 2021 3rd International Conference on Big Data Engineering, New York, NY, USA, 29–31 May 2021. [Google Scholar]
- Hu, L.; Li, W.; Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 88–98. [Google Scholar] [CrossRef]
- Li, L.; Liu, W.a. Dynamic changes of mangrove wetland landscape pattern in Lianzhou gulf of Guangxi and its causes. J. For. Environ. 2018, 38, 171–177. [Google Scholar]
- Tian, Q.J.; Li, S.S. Mangrove Recognition and Extraction Using Multispectral Remote Sensing Data in Beibu Gulf. In Proceedings of the Conference on Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII, Honolulu, HI, USA, 24–26 September 2018. [Google Scholar]
- Tao, Z.; Shucheng, Y.; Xiaomei, Y.; Shanshan, H. Mangroves Map of China 2018 (MC2018) Derived from 2-Meter Resolution Satellite Observations and Field Data; Science Data Bank: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Mishra, R.K. A review and comparison of commercially available pan-sharpening techniques for high resolution satellite image fusion. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 182–185. [Google Scholar]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Zhang, Q. Area, Distribution and Species Composition of Mangroves in China. Wetl. Sci. 2014, 12, 435–440. [Google Scholar]
- Zhang, Z.; Xu, N.; Li, Y.; Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 2022, 269, 112799. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.-Z.; Teng, J. Mapping large-area tidal flats without the dependence on tidal elevations: A case study of Southern China. ISPRS J. Photogramm. Remote Sens. 2020, 159, 256–270. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Chaurasia, A.; Culurciello, E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. In Proceedings of the IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, M.; Wang, Z.; Zhou, Y.; Mao, D.; Ren, C.; Zhao, C.; Liu, X. Tracking annual dynamics of mangrove forests in mangrove National Nature Reserves of China based on time series Sentinel-2 imagery during 2016–2020. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102918. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Tao, C.X.; Meng, Y.Z.; Li, J.J.; Yang, B.B.; Hu, F.M.; Li, Y.X.; Cui, C.L.; Zhang, W. MSNet: Multispectral semantic segmentation network for remote sensing images. Giscience Remote Sens. 2022, 59, 1177–1198. [Google Scholar] [CrossRef]
- Maurya, K.; Mahajan, S.; Chaube, N. Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex Intell. Syst. 2021, 7, 2797–2818. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, C.-Z. Identifying large-area mangrove distribution based on remote sensing: A binary classification approach considering subclasses of non-mangroves. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102750. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Peng, K.F.; Jiang, W.G.; Hou, P.; Wu, Z.F.; Ling, Z.Y.; Wang, X.Y.; Niu, Z.G.; Mao, D.H. Continental-scale wetland mapping: A novel algorithm for detailed wetland types classification based on time series Sentinel-1/2 images. Ecol. Indic. 2023, 148, 110113. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.Y.; Zhao, T.T.; Chen, X.D.; Lin, S.R.; Wang, J.Q.; Mi, J.; Liu, W.D. GWL_FCS30: A global 30 m wetland map with a fine classificationsystem using multi-sourced and time-series remote sensing imagery in 2020. Earth Syst. Sci. Data 2023, 15, 265–293. [Google Scholar] [CrossRef]
- Gao, G.F.; Li, P.F.; Zhong, J.X.; Shen, Z.J.; Chen, J.; Li, Y.T.; Isabwe, A.; Zhu, X.Y.; Ding, Q.S.; Zhang, S.; et al. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland. Sci. Total Environ. 2019, 653, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Li, H.Y.; Li, L.; Man, W.D.; Jia, M.M.; Wang, Z.M.; Lu, C.Y. Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China. Remote Sens. 2017, 9, 539. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Wei, H.Y.; Chen, R.D.; Liu, J.M.; Wang, L.K.; Gu, W. Invasive Trends of Spartina alterniflora in the Southeastern Coast of China and Potential Distributional Impacts on Mangrove Forests. Plants 2023, 12, 1923. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.J.; Javed, Z.; Liu, B.; Zhong, S.; Cheng, Z.; Rehman, A.; Du, D.L.; Li, J. Impact of Spartina alterniflora Invasion in Coastal Wetlands of China: Boon or Bane? Biology 2023, 12, 1057. [Google Scholar] [CrossRef]
Satellite/Sensor | GF-1 | GF-2 | GF-6 | ZY3-01 | ZY3-02 |
---|---|---|---|---|---|
Study area | ZZW, DFJ, TSG | ZZW, DFJ, TSG | ZZW, DFJ, TSG | TSG | ZZW, DFJ, TSG |
Data collection time | 15 January 2015 | 29 February 2016 | 23 November 2019 | 24 August 2015 | 18 December 2018 |
2 December 2021 | 15 August 2020 | 4 December 2021 | 4 December 2015 | 9 November 2021 | |
Number of images | 101 | 79 | 9 | 4 | 33 |
Number of bands | 5 | 5 | 5 | 8 | 8 |
Multispectral band resolution/m | 8 | 3.2 | 8 | 5.8 | 5.8 |
Pansharpened band resolution/m | 2 | 0.8 | 2 | 2.1 | 2.1 |
After image fusion resolution /m | 2 | 0.8 | 2 | 2.1 | 2.1 |
Study Areas | Years | Number of Sample Points (Statistics/Validation) | Source | ||||||
---|---|---|---|---|---|---|---|---|---|
Mangrove | Non-Mangrove | Total | |||||||
GER | GEC | FSs | GER | GEC | FSs | ||||
ZZW | 2015 | 412 | 50 | / | 106 | 72 | / | 640 | GER + GEC |
2018 | 434 | 14 | / | 83 | 100 | / | 631 | GER + GEC | |
2019 | 355 | 37 | / | 67 | 41 | / | 500 | GER + GEC | |
2020 | 372 | 59 | / | 87 | 83 | / | 601 | GER + GEC | |
DFJ | 2015 | 398 | 1885 | 18 | 99 | 3 | / | 706 | GER + GEC + FSs |
2018 | 332 | 186 | / | 98 | 4 | / | 620 | GER + GEC | |
2019 | 361 | 188 | / | 89 | 32 | / | 670 | GER + GEC | |
2020 | 424 | 156 | / | 101 | 15 | / | 696 | GER + GEC | |
TSG | 2015 | 468 | 11 | 34 | 98 | 80 | / | 691 | GER + GEC + FSs |
2018 | 342 | 6 | / | 97 | 54 | / | 499 | GER + GEC | |
2019 | 341 | 14 | / | 74 | 136 | / | 565 | GER + GEC | |
2020 | 375 | 15 | / | 101 | 71 | / | 562 | GER + GEC |
Study Area | Ground Truth | Precision | Recall | F1-Score |
---|---|---|---|---|
ZZW | Mangrove | 89.51% | 90.04% | 0.90 |
Non-Mangrove | 97.12% | 96.95% | 0.97 | |
DFJ | Mangrove | 93.78% | 89.99% | 0.92 |
Non-Mangrove | 98.63% | 99.18% | 0.99 | |
TSG | Mangrove | 94.34% | 94.49% | 0.94 |
Non-Mangrove | 98.62% | 98.58% | 0.99 |
Study Areas | Years | Ground Truth | PA | UA | OA | Kappa |
---|---|---|---|---|---|---|
ZZW | 2015 | Mangrove | 93.90% | 98.93% | 94.81% | 0.88 |
Non-Mangrove | 97.27% | 85.58% | ||||
2018 | Mangrove | 94.12% | 95.52% | 92.79% | 0.83 | |
Non-Mangrove | 89.71% | 86.73% | ||||
2019 | Mangrove | 90.11% | 96.79% | 89.93% | 0.74 | |
Non-Mangrove | 89.27% | 71.52% | ||||
2020 | Mangrove | 91.31% | 94.10% | 89.84% | 0.77 | |
Non-Mangrove | 86.29% | 80.57% | ||||
DFJ | 2015 | Mangrove | 96.64% | 99.34% | 96.58% | 0.87 |
Non-Mangrove | 96.23% | 82.93% | ||||
2018 | Mangrove | 94.18% | 99.23% | 94.51% | 0.82 | |
Non-Mangrove | 96.23% | 76.12% | ||||
2019 | Mangrove | 93.58% | 97.86% | 93.31% | 0.80 | |
Non-Mangrove | 90.98% | 77.07% | ||||
2020 | Mangrove | 95.24% | 98.14% | 94.57% | 0.82 | |
Non-Mangrove | 91.34% | 80% | ||||
TSG | 2015 | Mangrove | 91.44% | 99.03% | 92.88% | 0.83 |
Non-Mangrove | 97.27% | 78.76% | ||||
2018 | Mangrove | 92.80% | 99.71% | 94.69% | 0.88 | |
Non-Mangrove | 99.34% | 84.83% | ||||
2019 | Mangrove | 93.67% | 96.47% | 93.85% | 0.87 | |
Non-Mangrove | 94.17% | 89.74% | ||||
2020 | Mangrove | 90.49% | 97.50% | 91.68% | 0.82 | |
Non-Mangrove | 94.51% | 80.75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Jiang, W.; Ling, Z.; Zhong, S.; Zhang, Z.; Song, J.; Xiao, Z. Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat–Tide–Semantic Segmentation Approach for Mangrove Mapping. Remote Sens. 2023, 15, 5271. https://doi.org/10.3390/rs15225271
Sun Z, Jiang W, Ling Z, Zhong S, Zhang Z, Song J, Xiao Z. Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat–Tide–Semantic Segmentation Approach for Mangrove Mapping. Remote Sensing. 2023; 15(22):5271. https://doi.org/10.3390/rs15225271
Chicago/Turabian StyleSun, Ziyu, Weiguo Jiang, Ziyan Ling, Shiquan Zhong, Ze Zhang, Jie Song, and Zhijie Xiao. 2023. "Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat–Tide–Semantic Segmentation Approach for Mangrove Mapping" Remote Sensing 15, no. 22: 5271. https://doi.org/10.3390/rs15225271
APA StyleSun, Z., Jiang, W., Ling, Z., Zhong, S., Zhang, Z., Song, J., & Xiao, Z. (2023). Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat–Tide–Semantic Segmentation Approach for Mangrove Mapping. Remote Sensing, 15(22), 5271. https://doi.org/10.3390/rs15225271