Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.1.1. Study Area
2.1.2. Soil Moisture and Salt Data Collection
2.1.3. UAV Remote Sensing Image Data Acquisition and Processing
2.2. Construction of Spectral Index
2.3. Variable Filtering Methods
2.3.1. Pearson Correlation Analysis Method (PCA)
2.3.2. Grey Relational Analysis Method (GRA)
2.4. Model Construction and Accuracy Evaluation
2.4.1. Machine Learning Models
2.4.2. Accuracy Evaluation
3. Results
3.1. Statistical Analysis of Soil Salt Data
3.2. Screening of Spectral Index
3.3. Soil Salt Content Inversion Model Based on Machine Learning Methods
3.3.1. Inversion Model of SSC Using PCA Variable Selection Method
3.3.2. Inversion Model of SSC Using GRA Variable Selection Method
3.4. Comprehensive Evaluation and Analysis of the Models
4. Discussion
4.1. Comparison of Variable Filtering Methods
4.2. Comparative Analysis of Related Studies
4.3. Summary and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asfaw, E.; Suryabhagavan, K.V.; Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. J. Saudi Soc. Remote 2016, 17, 250–258. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114–211. [Google Scholar] [CrossRef]
- Han, L.; Liu, D.; Cheng, G.; Zhang, G.; Wang, L. Spatial distribution and genesis of salt on the saline playa at Qehan Lake, Inner Mongolia, China. CATENA 2019, 177, 22–30. [Google Scholar] [CrossRef]
- Carla, C.; Paula, P.; Maximiliano, A. Spatial and temporal patterns of soil salinization in shallow groundwater environments of the Bahía Blanca estuary: Influence of topography and land use. Land Degrad. Dev. 2022, 33, 470–483. [Google Scholar]
- Li, Y.; Chang, C.; Wang, Z.; Zhao, G. Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China. Ecol. Indic. 2023, 148, 110087. [Google Scholar] [CrossRef]
- Kasim, N.; Maihemuti, B.; Sawut, R.; Abliz, A.; Dong, C.; Abdumutallip, M. Quantitative estimation of soil salinization in an arid region of the Keriya Oasis based on multidimensional modeling. Water 2020, 12, 880. [Google Scholar] [CrossRef]
- Tan, J.; Ding, J.; Han, L.; Ge, X.; Wang, X.; Wang, J.; Wang, R.; Qin, S.; Zhang, Z.; Li, Y. Exploring planetscope satellite capabilities for soil salinity estimation and mapping in Arid Regions Oases. Remote Sens. 2023, 15, 1066. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, F.; Zhang, H.; Zhang, X.; Yuan, J. A study of soil salinity inversion based on multispectral remote sensing index in Ebinur Lake Wetland Nature Reserve. Spectrosc. Spect. Anal. 2019, 39, 1229–1235. [Google Scholar]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Dehaan, R.L.; Taylor, G.R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 2002, 80, 406–417. [Google Scholar] [CrossRef]
- Ding, J.; Yu, D. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma 2014, 235–236, 316–322. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Shen, Q.; Yao, Y.; Zhang, Y. Estimation of soil salt and ion contents based on hyperspectral remote sensing data: A case study of Baidunzi Basin, China. Water 2021, 13, 559. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Z.; Zhang, Z.; Wei, G.; Wang, X.; Han, J. UAV remote sensing inversion of soil salinity in field of sunflower. Trans. Chin. Soc. Agric. Mach. 2020, 51, 178–191. [Google Scholar]
- Nurmemet, I.; Ghulam, A.; Tiyip, T.; Elkadiri, R.; Ding, J.; Maimaitiyiming, M.; Abliz, A.; Sawut, M.; Zhang, F.; Abliz, A.; et al. Monitoring soil salinization in Keriya River Basin, Northwestern China using passive reflective and active microwave remote sensing data. Remote Sens. 2015, 7, 8803–8829. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, Y.; Lao, C.; Yang, N.; Zhou, Y.; Yang, Y. Inversion model of soil salt content in different depths based onadar remote sensing. Trans. Chin. Soc. Agric. Mach. 2020, 51, 243–251. [Google Scholar]
- Chen, R.; Shang, T.; Zhang, J.; Wang, Y.; Jia, K. Effects of different spectra types on the accuracy and correction of soil salt content inversion in Yinchuan Plain. China. J. Appl. Ecol. 2022, 33, 922–930. [Google Scholar]
- Xu, X.; Chen, Y.; Wang, M.; Wang, S.; Li, K.; Li, Y. Improving estimates of soil salt content by using two-date image spectral changes in Yinbei, China. Remote Sens. 2021, 13, 4165. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Lao, C.; Chen, J.; Zhang, Z.; Chen, Y.; Ma, Y.; Chen, H.; Gu, X.; Ning, J.; Jin, J.; Li, X. Predicting the contents of soil salt and major water-soluble ions with fractional-order derivative spectral indices and variable selection. Comput. Electron. Agric. 2021, 182, 106031. [Google Scholar] [CrossRef]
- Wei, G.; Li, Y.; Zhang, Z.; Chen, Y.; Chen, J.; Yao, Z.; Lao, C.; Chen, H. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms. PeerJ 2020, 8, e9087. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Akanksha; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Peng, M.; Han, W.; Li, C.; Huang, S. Improving the spatial and temporal estimation of maize daytime net ecosystem carbon exchange variation based on unmanned aerial vehicle multispectral remote sensing. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 10560–10570. [Google Scholar] [CrossRef]
- Huang, S.; Han, W.; Chen, H.; Li, G.; Tang, J. Recognizing zucchinis intercropped with sunflowers in UAV visible images using an improved method based on OCRNet. Remote Sens. 2021, 13, 2706. [Google Scholar] [CrossRef]
- Peng, X.; Han, W.; Ao, J.; Wang, Y. Assimilation of LAI derived from UAV multispectral data into the SAFY model to estimate maize yield. Remote Sens. 2021, 13, 1094. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Han, W.; Niu, Y.; Chávez, J.L.; Ma, W. The mean value of gaussian distribution of excess green index: A new crop water stress indicator. Agric. Water Manag. 2021, 251, 106866. [Google Scholar] [CrossRef]
- Li, G.; Han, W.; Huang, S.; Ma, W.; Ma, Q.; Cui, X. Extraction of sunflower lodging information based on UAV multi-spectral remote sensing and deep learning. Remote Sens. 2021, 13, 2721. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B.P. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Das, B.; Gaikwad, B.; Murgaonkar, D.; Kulkarni, R.M. Monitoring properties of the salt-affected soils by multivariate analysis of the visible and near-infrared hyperspectral data. CATENA 2020, 198, 105041. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, X.; Lü, L.; Ren, D.; Ke, J.; Xiong, Y.; Huo, Z.; Huang, G. Soil salinity distribution based on remote sensing and its effect on crop growth in Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2018, 34, 102–109. [Google Scholar]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef]
- Feng, J.; Ding, J.; Yang, A.; Cai, L. Remote sensing modeling of soil salinization information in arid areas. Agric. Res. Arid Areas. 2018, 36, 266–273. [Google Scholar]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Tang, Y.; Wang, X. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Yang, N.; Cui, W.; Zhang, Z.; Zhang, Z.; Chen, J.; Du, R.; Lao, C.; Zhou, Y. Soil salinity inversion at different depths using improved spectral index with UAV multispectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 13–21. [Google Scholar]
- He, Y.; Geng, Z.; Zhu, Q. Data driven soft sensor development for complex chemical processes using extreme learning machine. Chem. Eng. Res. Des. 2015, 102, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Kung, H.; Johnson, V.C. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote Sens. Environ. 2018, 218, 104–118. [Google Scholar] [CrossRef]
- Sanuade, O.A.; Hassan, A.M.; Akanji, A.O.; Olaojo, A.A.; Oladunjoye, M.A.; Abdulraheem, A. New empirical equation to estimate the soil moisture content based on thermal properties using machine learning techniques. Arab. J. Geosci. 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Nurmemet, I.; Sagan, V.; Ding, J.; Halik, Ü.; Abliz, A.; Yakup, Z. A WFS-SVM model for soil salinity mapping in Keriya Oasis, Northwestern China using polarimetric decomposition and fully PolSAR data. Remote Sens. 2018, 10, 598. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zhuang, L.; Liu, W.; Liu, X.; Li, X. Inversion of heavy metal content in rice canopy based on wavelet transform and BP neural network. Trans. Chin. Soc. Agric. Mach. 2019, 50, 226–232. [Google Scholar]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z. Digital mapping of soil salinization in arid area wetland based on variable optimized selection and machine learning. Trans. Chin. Soc. Agric. Eng. 2020, 36, 124–131. [Google Scholar]
- Triki, F.H.; Bouaziz, M.; Benzina, M.; Bouaziz, S. Modeling of soil salinity within a semi-arid region using spectral analysis. Arab. J. Geosci. 2015, 8, 11175–11182. [Google Scholar] [CrossRef]
- Cui, X.; Han, W.; Zhang, H.; Cui, J.; Ma, W.; Zhang, L.; Li, G. Estimating soil salinity under sunflower cover in the Hetao Irrigation District based on unmanned aerial vehicle remote sensing. Land Degrad. Dev. 2022, 34, 84–97. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Moreno, M.; Bardeen, M. Artificial neural network to predict vine water status spatial variability using multispectral information obtained from an unmanned aerial vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef]
- Hou, C.; Tian, D.; Xu, B.; Li, X. Effect of root distribution of different crops in salt containing soil on soil water and salt. J. Drain. Irrig. Mach. Eng. 2018, 36, 1059–1064. [Google Scholar]
- Zhang, L.; Han, W.; Niu, Y.; Chávez, J.L.; Zhang, H. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices. Comput. Electron. Agric. 2021, 185, 106174. [Google Scholar] [CrossRef]
- Cao, X.; Ding, J.; Ge, X.; Wang, J. Estimation of soil electrical conductivity based on spectral index and machine learning algorithm. Acta. Pedol. Sin. 2020, 57, 867–877. [Google Scholar]
- Khosravi, V.; Doulati, A.F.; Yousefi, S.; Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma 2018, 318, 29–41. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of VIS-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, R.; Yang, S.; Yang, N.; Wei, G.; Yao, Z.; Qiu, Y. Effects of water-salt interaction on soil spectral characteristics in Hetao Irrigation Areas of Inner Mongolia, China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 153–164. [Google Scholar]
- Yang, X.; Yu, Y. Estimating soil salinity under various moisture conditions: An experimental study. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- Yahiaoui, I.; Douaoui, A.; Zhang, Q.; Ziane, A. Soil salinity prediction in the Lower Cheliff plain (Algeria) based on remote sensing and topographic feature analysis. J. Arid Land 2015, 7, 794–805. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative estimation of soil salinity using UAV-Borne hyperspectral and satellite multispectral images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Franceschini, M.H.D.; Kramer, H.; Van Loo, E.N.; Roman, V.J.; Finkers, R. UAV based soil salinity assessment of cropland. Geoderma 2018, 338, 502–512. [Google Scholar] [CrossRef]
Vegetation Index | Formulas | References | Salt Index | Formulas | References |
---|---|---|---|---|---|
SR | [34] | SI | [35] | ||
DVI | SI1 | ||||
EVI | SI2 | ||||
ARVI | SI3 | ||||
SAVI | S1 | ||||
CRSI | S2 | ||||
NDVI | S3 | ||||
GNDVI | [36] | S5 | |||
MSAVI | [37] | S6 | |||
NDVI-reg | [34] | SI-T |
Soil Depths (cm) | Data Sets | Total | Min (%) | Max (%) | Average (%) | Median (%) | Standard Deviation (%) |
---|---|---|---|---|---|---|---|
0–20 | Total sample | 120 | 0.070 | 0.503 | 0.151 | 0.107 | 0.097 |
Training set | 80 | 0.070 | 0.503 | 0.144 | 0.107 | 0.090 | |
Validation set | 40 | 0.074 | 0.488 | 0.158 | 0.108 | 0.109 | |
20–40 | Total sample | 120 | 0.073 | 0.556 | 0.162 | 0.128 | 0.097 |
Training set | 80 | 0.076 | 0.556 | 0.164 | 0.128 | 0.101 | |
Validation set | 40 | 0.073 | 0.521 | 0.160 | 0.133 | 0.090 |
Methods | Soil Depth (cm) | Vegetation Index Groups | Salt Index Groups | Combination Variable Groups |
---|---|---|---|---|
PCA | 0–20 | NDVI-reg, GNDVI, ARVI, CRSI | S2, S3, S1, SI-T | NDVI-reg, GNDVI, S2, S3, SMC |
20–40 | NDVI-reg, GNDVI, ARVI, DVI | S1, S2, S3, SI-T | NDVI-reg, GNDVI, S1, S2, SMC | |
GRA | 0–20 | CRSI, MSAVI, NDVI-reg, SR | SI, SI1, SI2, SI3 | CRSI, MSAVI, SI, SI1, SMC |
20–40 | MSAVI, SR, CRSI, ARVI | SI, S5, SI1, SI3 | MSAVI, SR, SI, S5, SMC |
Input Variable Groups | Model Algorithm | Soil Depths (cm) | |||||
---|---|---|---|---|---|---|---|
0–20 | 20–40 | ||||||
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
Vegetation index group | SVM | 0.598 | 0.071 | 0.046 | 0.392 | 0.077 | 0.051 |
BPNN | 0.612 | 0.069 | 0.048 | 0.262 | 0.078 | 0.058 | |
RF | 0.543 | 0.074 | 0.052 | 0.290 | 0.077 | 0.054 | |
Salt index group | SVM | 0.319 | 0.094 | 0.057 | 0.279 | 0.079 | 0.052 |
BPNN | 0.444 | 0.084 | 0.051 | 0.326 | 0.074 | 0.054 | |
RF | 0.165 | 0.101 | 0.063 | 0.226 | 0.080 | 0.056 | |
Combination variable group | SVM | 0.549 | 0.078 | 0.048 | 0.610 | 0.063 | 0.035 |
BPNN | 0.752 | 0.064 | 0.044 | 0.745 | 0.046 | 0.029 | |
RF | 0.669 | 0.065 | 0.050 | 0.809 | 0.040 | 0.027 |
Input Variable Groups | Model Algorithm | Soil Depths (cm) | |||||
---|---|---|---|---|---|---|---|
0–20 | 20–40 | ||||||
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
Vegetation index groups | SVM | 0.626 | 0.066 | 0.044 | 0.468 | 0.068 | 0.046 |
BPNN | 0.560 | 0.072 | 0.050 | 0.444 | 0.070 | 0.053 | |
RF | 0.611 | 0.069 | 0.049 | 0.214 | 0.083 | 0.060 | |
Salt index groups | SVM | 0.594 | 0.069 | 0.047 | 0.539 | 0.066 | 0.048 |
BPNN | 0.514 | 0.076 | 0.054 | 0.473 | 0.070 | 0.052 | |
RF | 0.531 | 0.075 | 0.056 | 0.195 | 0.082 | 0.063 | |
Combination variable groups | SVM | 0.745 | 0.058 | 0.041 | 0.697 | 0.056 | 0.038 |
BPNN | 0.775 | 0.055 | 0.038 | 0.760 | 0.046 | 0.033 | |
RF | 0.728 | 0.058 | 0.045 | 0.810 | 0.041 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Chen, X.; Han, W.; Cui, X.; Ma, W.; Li, G. Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms. Remote Sens. 2023, 15, 5254. https://doi.org/10.3390/rs15215254
Cui J, Chen X, Han W, Cui X, Ma W, Li G. Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms. Remote Sensing. 2023; 15(21):5254. https://doi.org/10.3390/rs15215254
Chicago/Turabian StyleCui, Jiawei, Xiangwei Chen, Wenting Han, Xin Cui, Weitong Ma, and Guang Li. 2023. "Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms" Remote Sensing 15, no. 21: 5254. https://doi.org/10.3390/rs15215254
APA StyleCui, J., Chen, X., Han, W., Cui, X., Ma, W., & Li, G. (2023). Estimation of Soil Salt Content at Different Depths Using UAV Multi-Spectral Remote Sensing Combined with Machine Learning Algorithms. Remote Sensing, 15(21), 5254. https://doi.org/10.3390/rs15215254