Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Study Region
2.2. Methods
2.2.1. Radiative Transfer Modeling in the MIR
2.2.2. Retrieval of the Ground Brightness Radiation
3. Sea Surface Bidirectional Reflectivity Results
- -
- Stage 1: MODTRAN4 is used to simulate the corresponding and , and , , , and for each pixel under the real observation geometry and atmospheric conditions. Then and can be obtained using Equation (2).
- -
- Stage 2: and obtained in Stage 1 can be used to determine and in terms of the Planck function. The sea surface brightness temperatures without contributions from the direct solar beam are calculated from the solar zenith angle corresponding to each pixel in the sample according to the Equation (12) of which the parameters are shown in Figure 6. Then can be obtained from the Planck function.
- -
- Stage 3: Determine based on , , and the simulated which was precomputed in Stage 1.
- -
- Stage 4: Once , , and have been calculated in Stage 1, 2, and 3, respectively, the can be determined referring to Equation (7).
4. Precision Test
5. Error Analysis
5.1. Analysis of Factors on Transmittance of Mid-Infrared
5.2. Error in Sea Surface Reflectance of Infrared Channels in Model Calculations
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, G.; Liu, Q.; Liu, Q.; Huang, W.; Wang, J. Simulation of high-resolution mid-infrared (3–5 μm) images using an atmosphere radiative transfer analytic model. Int. J. Remote Sens. 2009, 30, 6003–6022. [Google Scholar] [CrossRef]
- Granlund, L.; Keski-Saari, S.; Kumpula, T.; Oksanen, E.; Keinänen, M. Imaging lichen water content with visible to mid-wave infrared (400–5500 nm) spectroscopy. Remote Sens. Environ. 2018, 216, 301–310. [Google Scholar] [CrossRef]
- Capelle, V.; Hartmann, J.M. Use of hyperspectral sounders to retrieve daytime sea-surface temperature from mid-infrared radiances: Application to IASI. Remote Sens. Environ. 2022, 280, 113171. [Google Scholar] [CrossRef]
- Ottaviani, M.; Stamnes, K.; Koskulics, J.; Eide, H.; Long, S.R.; Su, W.; Wiscombe, W. Light reflection from water waves: Suitable setup for a polarimetric investigation under controlled laboratory conditions. J. Atmos. Ocean. Technol. 2008, 25, 715–728. [Google Scholar] [CrossRef]
- Kim, D.; Cho, J.; Hong, S.; Lee, H.; Won, M.; Byun, S.; Park, K.; Lee, Y.-W. First retrieval of fire radiative power from COMS data using the mid-infrared radiance method. Remote Sens. Lett. 2017, 8, 116–125. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Li, Z.-L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sens. Environ. 2006, 105, 326–340. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C.; Bailey, S.W.; Pahlevan, N.; Franz, B.A. Cross-calibration of MODIS and VIIRS long near infrared bands for ocean color science and applications. Remote Sens. Environ. 2021, 260, 112439. [Google Scholar] [CrossRef]
- Wang, J.; Tang, B.H.; Li, Z.L.; Tang, R.L.; Wu, H. Retrieval of Land Surface Temperature from MODIS Mid-Infrared Data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4404–4407. [Google Scholar]
- Liu, Y.; Zhang, W.; Zhang, B. Top-of-Atmosphere Image Simulation in the 4.3 μm Mid-infrared Absorption Bands. IEEE Trans. Geosci. Remote Sens. 2016, 54, 452–456. [Google Scholar] [CrossRef]
- Zheng, H. A Theoretical Study of a Vector Radiative Transfer Equation for Atmosphere and Ocean Medium. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1430–1432. [Google Scholar] [CrossRef]
- El-Nimri, S.F.; Jones, W.L.; Uhlhorn, E.; Ruf, C.; Johnson, J.; Black, P. An Improved C-Band Ocean Surface Emissivity Model at Hurricane-Force Wind Speeds Over a Wide Range of Earth Incidence Angles. IEEE Geosci. Remote Sens. Lett. 2010, 7, 641–645. [Google Scholar] [CrossRef]
- Hagolle, O.; Nicolas, J.M.; Fougnie, B.; Cabot, F.; Henry, P. Absolute calibration of VEGETATION derived from an interband method based on the Sun glint over ocean. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1472–1481. [Google Scholar] [CrossRef]
- Fan, C.; Fu, G.; Di Noia, A.; Smit, M.; Rietjens, J.H.H.; Ferrare, R.A.; Burton, S.; Li, Z.; Hasekamp, O.P. Use of A Neural Network-Based Ocean Body Radiative Transfer Model for Aerosol Retrievals from Multi-Angle Polarimetric Measurements. Remote Sens. 2019, 11, 2877. [Google Scholar] [CrossRef]
- Khazâal, A.; Tenerelli, J.; Cabot, F. Impact of Sun glint on the SMOS Retrieved Brightness Temperature Maps for Almost Four Years of Data. Remote Sens. Environ. 2016, 180, 234–245. [Google Scholar] [CrossRef]
- Xue, Q.; Guan, L. Identification of Sun Glint Contamination in GMI Measurements Over the Global Ocean. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6473–6483. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M. Evaluation of sun glint models using MODIS measurements. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 492–506. [Google Scholar] [CrossRef]
- Philpot, W. Estimating Atmospheric Transmission and Surface Reflectance from a Glint-Contaminated Spectral Image. IEEE Trans. Geosci. Remote Sens. 2007, 45, 448–457. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Kim, W.; Lee, B. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans. Opt. Express 2016, 24, 29659–29669. [Google Scholar] [CrossRef]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef]
- Luderer, G.; Coakley, J.A.; Tahnk, W.R. Using sun glint to check the relative calibration of reflected spectral radiances. J. Atmos. Ocean. Technol. 2005, 22, 1480–1493. [Google Scholar] [CrossRef]
- Li, Z.; Petitcolin, F.; Zhang, R. A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data. Sci. China Ser. E Technol. Sci. 2000, 43, 23–33. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Rutledge, K.; Stamnes, K.; Wang, Y. Analytical solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface. Appl. Opt. 2006, 45, 7443–7455. [Google Scholar] [CrossRef]
- Fell, F.; Fischer, J. Numerical simulation of the light field in the atmosphere–ocean system using the matrix-operator method. J. Quant. Spectrosc. Radiat. Transf. 2001, 69, 351–388. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Zhu, Q.; Gong, F. A vector radiative transfer model of coupled ocean–atmosphere system using matrix-operator method for rough sea-surface. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1426–1448. [Google Scholar] [CrossRef]
- Petitcolin, F.; Nerry, F.; Stoll, M.P. Mapping directional emissivity at 3.7 μm using a simple model of bi-directional reflectivity. Int. J. Remote Sens. 2002, 23, 3443–3472. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Y.; Yang, H.; Fang, L.; Liu, Q.; Shi, J. A case study for intercomparison of land surface temperature retrieved from GOES and MODIS. Int. J. Digit. Earth 2015, 8, 476–494. [Google Scholar] [CrossRef]
- Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 43, 67–85. [Google Scholar] [CrossRef]
- Goita, K.; Royer, A. Surface temperature and emissivity separability over land surface from combined TIR and SWIR AVHRR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 718–733. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.L. Retrieval of land surface bidirectional reflectivity in the mid-infrared from MODIS channels 22 and 23. Int. J. Remote Sens. 2008, 29, 4907–4925. [Google Scholar] [CrossRef]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Jing, X.; Hu, X.-Q.; Zhao, S.; He, L.-Q.; Hu, X.; Yan, L. The Sun Glint Area Reflectance Calculation of VIIRS Middle Infrared Channel in South Indian Ocean Based on Improved Nonlinear Split Window Model. Spectrosc. Spectr. Anal. 2017, 37, 394–402. [Google Scholar] [CrossRef]
- Høyer, J.L.; Le Borgne, P.; Eastwood, S. A bias correction method for Arctic satellite sea surface temperature observations. Remote Sens. Environ. 2014, 146, 201–213. [Google Scholar] [CrossRef]
- Tang, B.T.; Jia, Y.-Y.; Zhang, X.; Li, Z.-L. Vegetation monitoring with surface bi-directional reflectivities in MODIS near-IR and mid-IR channels. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3333–3336. [Google Scholar]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Eltbaakh, Y.A.; Ruslan, M.H.; Alghoul, M.A.; Othman, M.Y.; Sopian, K. Measurements of spectral-band solar irradiance in Bangi, Malaysia. Sol. Energy 2013, 89, 62–80. [Google Scholar] [CrossRef]
- Huang, F.; Zhou, J.; Tao, J.; Tan, X.; Liang, S.; Cheng, J. PMODTRAN: A parallel implementation based on MODTRAN for massive remote sensing data processing. Int. J. Digit. Earth 2016, 9, 819–834. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Caselles, V.; Coll, C. Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C 1993, 16, 219–236. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Mushkin, A.; Balick, L.K.; Gillespie, A.R. Extending surface temperature and emissivity retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote Sens. Environ. 2005, 98, 141–151. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.-A. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso, C.R., Jr.; Martínez, J.-M.; Motta-Marques, D. Atmospheric and sunglint correction for retrieving chlorophyll-a in a productive tropical estuarine-lagoon system using Sentinel-2 MSI imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
Property | 20 Band | 21 Band |
---|---|---|
Center wavelength | 3.8 μm | 4.05 μm |
Effective band width | 180 nm | 155 nm |
Spatial resolution | 1000 m | 1000 m |
Noise equivalent temperature difference | 0.25 K | 0.25 K |
Dynamic Range | 200–350 K | 200–380 K |
Data | Data Sources | Spatial Resolution | Description |
---|---|---|---|
FY-3D MERSI-II MOD08_D3 Sea surface temperature | NSMC | 250, 1000 m | |
NASA EOS | 1° | Level-3 MODIS gridded atmosphere product | |
ECMWF | 0.25° | The temperature of sea water near the surface | |
10 m v-component of wind 10 m u-component of wind | ECMWF | 0.25° | Northward component of the 10 m wind |
ECMWF | 0.25° | Eastward component of the 10 m wind | |
Total column water vapor FY-3D MERSI-II MOD08_D3 Sea surface temperature | ECMWF | 0.25° | Total amount of water vapor in a column |
NSMC | 1° | Level-3 MODIS gridded atmosphere product | |
NASA EOS | 0.25° | The temperature of sea water near the surface | |
ECMWF | 0.25° | Northward component of the 10 m wind | |
10 m v-component of wind | ECMWF | 0.25° | Eastward component of the 10 m wind |
ECMWF | 0.25° | Total amount of water vapor in a column |
Factors of Uncertainty | Error (%) |
---|---|
Water vapor | 1.16 |
Aerosol optical thickness | 0.34 |
The first hypothesis | 0.01 |
The second hypothesis | 0.83 |
Instrumental noise (NEDT) | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Chen, W.; Wang, H.; Hu, X.; Tang, H.; Li, G.; Zhang, F. Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20. Remote Sens. 2023, 15, 5117. https://doi.org/10.3390/rs15215117
Peng B, Chen W, Wang H, Hu X, Tang H, Li G, Zhang F. Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20. Remote Sensing. 2023; 15(21):5117. https://doi.org/10.3390/rs15215117
Chicago/Turabian StylePeng, Bo, Wei Chen, Hengyang Wang, Xiuqing Hu, Hongzhao Tang, Guangchao Li, and Fengjiao Zhang. 2023. "Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20" Remote Sensing 15, no. 21: 5117. https://doi.org/10.3390/rs15215117
APA StylePeng, B., Chen, W., Wang, H., Hu, X., Tang, H., Li, G., & Zhang, F. (2023). Retrieval of an On-Orbit Bidirectional Reflectivity Reference in the Mid-Infrared Bands of FY-3D/MERSI-2 Channels 20. Remote Sensing, 15(21), 5117. https://doi.org/10.3390/rs15215117