Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Source and Preprocessing of Remote Sensing Data
2.2.2. Construction of Data Set
2.3. Vegetation Feature
2.4. Improved DeepLab V3+ Classification Method
2.5. CBAM Module
2.6. Weighted Cross-Entropy Loss Function
2.7. Model Training
3. Results and Analysis
3.1. Effects of Different Vegetation Indices on Identification Results
3.2. Ablation Experiment
3.3. The Influence of Different Semantic Segmentation Models on Recognition Results
3.4. Result Analysis
4. Discussion
4.1. Advantages of the Algorithm in This Paper
4.2. Deficiency and Prospect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Gong, Q.; Yang, S. A Sustainable, Regional Agricultural Development Measurement System Based on Dissipative Structure Theory and the Entropy Weight Method: A Case Study in Chengdu, China. Sustainability 2019, 11, 5313. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s Food Security and Land Use Policy under Rapid Urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sens. 2020, 12, 1274. [Google Scholar] [CrossRef]
- Ren, S.; Guo, B.; Wu, X.; Zhang, L.; Ji, M.; Wang, J. Winter Wheat Planted Area Monitoring and Yield Modeling Using MODIS Data in the Huang-Huai-Hai Plain, China. Comput. Electron. Agric. 2021, 182, 106049. [Google Scholar] [CrossRef]
- Ji, F.H.; Liu, J.; Wang, L.M. Crop type remote sensing recognition algorithm and application example of domestic high resolution satellite. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 254. [Google Scholar]
- Ashourloo, D.; Nematollahi, H.; Huete, A.; Aghighi, H.; Azadbakht, M.; Shahrabi, H.S.; Goodarzdashti, S. A New Phenology-Based Method for Mapping Wheat and Barley Using Time-Series of Sentinel-2 Images. Remote Sens. Environ. 2022, 280, 113206. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Li, W.; Ma, T. Extraction of Winter Wheat Planting Area Based on Multi-Scale Fusion. Remote Sens. 2023, 15, 164. [Google Scholar] [CrossRef]
- Seifi Majdar, R.; Ghassemian, H. A Probabilistic SVM Approach for Hyperspectral Image Classification Using Spectral and Texture Features. Int. J. Remote Sens. 2017, 38, 4265–4284. [Google Scholar] [CrossRef]
- Murakami, T.; Ogawa, S.; Ishitsuka, N.; Kumagai, K.; Saito, G. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. Int. J. Remote Sens. 2001, 22, 1335. [Google Scholar] [CrossRef]
- Xu, W.B.; Zhang, G.P.; Fan, J.L.; Qian, Y.L. Remote sensing monitoring of w inter w heat areas using MODIS data. Trans. Chin. Soc. Agric. Eng. 2007, 12, 144. [Google Scholar]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232. [Google Scholar] [CrossRef]
- Wang, Q.T.; Lin, X.G.; Wang, Z.J.; Liang, Y. Study on Extracting Winter Wheat Planting Area by Object Oriented Classification. Sci. Surv. Mapp. 2008, 33, 143. [Google Scholar]
- Zhao, J.L.; Zan, Y.Y.; Wang, J. SE-UNet Based Extraction of Winter Wheat Planting Areas. Trans. Chin. Soc. Agric. Mach. 2022, 53, 189. [Google Scholar]
- Zhou, T.; Pan, J.J.; Han, T.; Wei, S. Planting area extraction of winter wheat based on multi-temporal SAR data and optical imagery. Trans. Chin. Soc. Agric. Eng. 2017, 33, 215. [Google Scholar]
- Ma, Z.L.; Liu, C.H.; Xue, H.X.; Li, J.R.; Fang, X.; Zhou, J.L. Identification of Winter Wheat by Integrating Active and Passive Remote Sensing Data Based on Google Earth Engine Platform. Trans. Chin. Soc. Agric. Mach. 2021, 52, 195. [Google Scholar]
- Zhang, Z.J.; Hua, L.; Zheng, X.; Li, J.Q. Extraction of cropping patterns in Jianghan Plain based on GEE and Sentinel-NDVI time series data. Trans. Chin. Soc. Agric. Eng. 2022, 38, 196. [Google Scholar]
- Tian, H.; Chen, T.; Li, Q.; Mei, Q.; Wang, S.; Yang, M.; Wang, Y.; Qin, Y. A Novel Spectral Index for Automatic Canola Mapping by Using Sentinel-2 Imagery. Remote Sens. 2022, 14, 1113. [Google Scholar] [CrossRef]
- Xu, H.; Song, J.; Zhu, Y. Evaluation and Comparison of Semantic Segmentation Networks for Rice Identification Based on Sentinel-2 Imagery. Remote Sens. 2023, 15, 1499. [Google Scholar] [CrossRef]
- Qi, X.; Wang, Y.; Peng, J.; Zhang, L.; Yuan, W.; Qi, X. The 10-Meter Winter Wheat Mapping in Shandong Province Using Sentinel-2 Data and Coarse Resolution Maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9760–9774. [Google Scholar] [CrossRef]
- Du, Z.; Yang, J.; Ou, C.; Zhang, T. Smallholder Crop Area Mapped with a Semantic Segmentation Deep Learning Method. Remote Sens. 2019, 11, 888. [Google Scholar] [CrossRef]
- Zhao, J.; Zhong, Y.; Hu, X.; Wei, L.; Zhang, L. A Robust Spectral-Spatial Approach to Identifying Heterogeneous Crops Using Remote Sensing Imagery with High Spectral and Spatial Resolutions. Remote Sens. Environ. 2020, 239, 111605. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, Z.; She, X.; Zhou, L.; Ren, T.; Liu, S.; Lu, J. Identifying Dike-Pond System Using an Improved Cascade R-CNN Model and High-Resolution Satellite Images. Remote Sens. 2022, 14, 717. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Zhang, Y.; Zhao, X.; Qu, T.; Tian, H.; Lu, Y.; Su, J.; Luo, D.; Yang, Y. A Spatial Distribution Extraction Method for Winter Wheat Based on Improved U-Net. Remote Sens. 2023, 15, 3711. [Google Scholar] [CrossRef]
- Song, D.; Zhang, C.; Yang, X.; Li, F.; Han, Y.; Gao, S.; Dong, H. Extracting Winter Wheat Spatial Distribution Information from GF-2 Image. Natl. Remote Sens. Bull. 2020, 24, 596–608. [Google Scholar] [CrossRef]
- Liu, D.; Han, L.; Han, X. High Spatial Resolution Remote Sensing Image Classification Based on Deep Learning. Acta Opt. Sin. 2016, 36, 0428001. [Google Scholar]
- Yang, Z.Y.; Zhang, H.Y.; Ming, J. Extraction of winter rapeseed from high-resolution remote sensing imagery via deep learning. Bull. Surv. Mapp. 2020, 9, 110. [Google Scholar]
- Ayhan, B.; Kwan, C. Tree, Shrub, and Grass Classification Using Only RGB Images. Remote Sens. 2020, 12, 1333. [Google Scholar] [CrossRef]
- Long, C.; Wenlong, S.; Tao, S.; Yizhu, L.; Wei, J.; Jun, L.; Hongjie, L.; Tianshi, F.; Rongjie, G.; Abbas, H.; et al. Field Patch Extraction Based on High-Resolution Imaging and U2-Net++ Convolutional Neural Networks. Remote Sens. 2023, 15, 4900. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, G.; Yao, J.; Huang, D.; Tan, H.; Jia, H.; Zou, Z. An Improved U-Net Model Based on Multi-Scale Input and Attention Mechanism: Application for Recognition of Chinese Cabbage and Weed. Sustainability 2023, 15, 5764. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Lei, Y.; Huang, L. Application of UAV RGB Images and Improved PSPNet Network to the Identification of Wheat Lodging Areas. Agronomy 2023, 13, 1309. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, B.; Chen, J.; Liang, C. High-Resolution Boundary Refined Convolutional Neural Network for Automatic Agricultural Greenhouses Extraction from GaoFen-2 Satellite Imageries. Remote Sens. 2021, 13, 4237. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, M.H.; He, Y.Q.; He, Y.N. Studies on HighResolution Remote Sensing Sugarcane Field Extraction based on Deep Learning. IOP Conf. Ser. Earth Environ. Sci. 2019, 237, 32. [Google Scholar] [CrossRef]
- Yang, S.Q.; Song, Z.S.; Ying, H.P.; Zhang, Z.T.; Ning, J.F. Crop Classification Method of UVA Multispectral Remote Sensing Based on Deep Semantic Segmentation. Trans. Chin. Soc. Agric. Mach. 2021, 52, 185–192. [Google Scholar]
- Tallam, K.; Nguyen, N.; Ventura, J.; Fricker, A.; Calhoun, S.; O’Leary, J.; Fitzgibbons, M.; Robbins, I.; Walter, R.K. Application of Deep Learning for Classification of Intertidal Eelgrass from Drone-Acquired Imagery. Remote Sens. 2023, 15, 2321. [Google Scholar] [CrossRef]
- Wang, X.; Kang, M.; Chen, Y.; Jiang, W.; Wang, M.; Weise, T.; Tan, M.; Xu, L.; Li, X.; Zou, L.; et al. Adaptive Local Cross-Channel Vector Pooling Attention Module for Semantic Segmentation of Remote Sensing Imagery. Remote Sens. 2023, 15, 1980. [Google Scholar] [CrossRef]
- Wang, L.J.; Wu, B.F.; Zhang, M. Winter wheat and rapeseed classification during key growth period by integrating multi-source remote sensing data. J. Geo-Inf. Sci. 2019, 21, 1121–1131. [Google Scholar]
- Vilela, E.F.; Ferreira, W.P.M.; Castro, G.D.M.d.; Faria, A.L.R.d.; Leite, D.H.; Lima, I.A.; Matos, C.d.S.M.d.; Silva, R.A.; Venzon, M. New Spectral Index and Machine Learning Models for Detecting Coffee Leaf Miner Infestation Using Sentinel-2 Multispectral Imagery. Agriculture 2023, 13, 388. [Google Scholar] [CrossRef]
- Khan, H.R.; Gillani, Z.; Jamal, M.H.; Athar, A.; Chaudhry, M.T.; Chao, H.; He, Y.; Chen, M. Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series Sentinel-2 Imagery. Sensors 2023, 23, 1779. [Google Scholar] [CrossRef]
- Ashourloo, D.; Shahrabi, H.S.; Azadbakht, M.; Aghighi, H.; Nematollahi, H.; Alimohammadi, A.; Matkan, A.A. Automatic canola mapping using time series of sentinel 2 images. ISPRS J. Photogramm. Remote Sens. 2019, 156, 63–76. [Google Scholar] [CrossRef]
- Ren, H.J.; Liu, P.; Dai, C.; Shi, J.C. Crop Segmentation Method of Remote Sensing Image Based on Improved DeepLabV3+ Network. Comput. Eng. Appl. 2022, 58, 215. [Google Scholar]
- Lin, Y.; Xu, D.; Wang, N.; Shi, Z.; Chen, Q. Road Extraction from Very-High-Resolution Remote Sensing Images via a Nested SE-Deeplab Model. Remote Sens. 2020, 12, 2985, Erratum in Remote Sens. 2021, 13, 783. [Google Scholar] [CrossRef]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series Sentinel-2 Imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, R.; Chang, L. A Study on the Dynamic Effects and Ecological Stress of Eco-Environment in the Headwaters of the Yangtze River Based on Improved DeepLab V3+ Network. Remote Sens. 2022, 14, 2225. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, H.; Li, Y.; Liu, B.; Liu, P. Oil Spill Identification in Radar Images Using a Soft Attention Segmentation Model. Remote Sens. 2022, 14, 2180. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, X.; Chen, Z.; Bai, Y. Crop Identification and Analysis in Typical Cultivated Areas of Inner Mongolia with Single-Phase Sentinel-2 Images. Sustainability 2022, 14, 12789. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, J.; Qiu, M.; Li, X.; Zhu, S. CA-BASNet: A Building Extraction Network in High Spatial Resolution Remote Sensing Images. Sustainability 2022, 14, 11633. [Google Scholar] [CrossRef]
- Jia, X.; Jiang, X.; Li, Z.; Mu, J.; Wang, Y.; Niu, Y. Application of Deep Learning in Image Recognition of Citrus Pests. Agriculture 2023, 13, 1023. [Google Scholar] [CrossRef]
- Yin, M.; Chen, Z.; Zhang, C. A CNN-Transformer Network Combining CBAM for Change Detection in High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 2406. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Shen, Z.F.; Li, Y.; Zhao, L.F. Classification of high-resolution remote sensing images based on enhanced DeepLab algorithm and adaptive loss function. Natl. Remote Sens. Bull. 2022, 26, 406. [Google Scholar] [CrossRef]
- Cai, M.; Yi, X.; Wang, G.; Mo, L.; Wu, P.; Mwanza, C.; Kapula, K.E. Image Segmentation Method for Sweetgum Leaf Spots Based on an Improved DeeplabV3+ Network. Forests 2022, 13, 2095. [Google Scholar] [CrossRef]
Vegetation Index | Calculation Formula | |
---|---|---|
NDVI | (1) | |
GNDVI | (2) | |
OSAVI | (3) | |
CI | (4) |
MIoU | PA | IoU | F1_Score | |||
---|---|---|---|---|---|---|
Wheat | Rape | Wheat | Rape | |||
Origin | 82.14% | 93.69% | 91.97% | 68.47% | 95.82% | 81.37% |
+NDVI | 84.68% | 94.67% | 92.78% | 73.41% | 96.28% | 84.78% |
+GNDVI | 84.33% | 94.56% | 92.71% | 72.10% | 96.22% | 83.74% |
+OSAVI | 84.95% | 94.65% | 92.71% | 73.75% | 96.22% | 84.94% |
+CI | 84.96% | 94.64% | 92.71% | 74.17% | 96.25% | 84.99% |
MIoU | PA | IoU | F1_Score | |||
---|---|---|---|---|---|---|
Wheat | Rape | Wheat | Rape | |||
+CI | 84.96% | 94.64% | 92.71% | 74.17% | 96.25% | 84.99% |
+CI+OSAVI | 85.63% | 95.30% | 93.76% | 74.24% | 96.78% | 85.51% |
+CI+OSAVI+NDVI | 84.27% | 94.67% | 92.78% | 73.41% | 96.28% | 84.78% |
+CI+OSAVI+NDVI+GNDVI | 84.33% | 94.41% | 92.45% | 72.67% | 96.07% | 84.31% |
Backbone Network | MIoU | PA | Parameter Size/MB | Training Times/Epoch | Single Graph Prediction Time/ms |
---|---|---|---|---|---|
Xception | 84.16% | 94.51% | 208.7 | 265 | 10 |
Mobilenet V2 | 84.62% | 94.71% | 27.91 | 100 | 4 |
MIoU | PA | IoU | F1_Score | |||
---|---|---|---|---|---|---|
Wheat | Rape | Wheat | Rape | |||
SegNet | 82.27% | 94.12% | 92.04% | 67.21% | 95.85% | 80.46% |
UNet | 83.98% | 94.69% | 92.92% | 70.21% | 96.33% | 82.48% |
DeepLab V3+ | 84.62% | 94.71% | 92.81% | 72.14% | 96.27% | 83.87% |
MyDeepLab V3+ | 85.63% | 95.30% | 93.76% | 74.24% | 96.78% | 85.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Z.; Li, H.; Chen, D.; Liu, Y.; Zou, C.; Chen, J.; Han, W.; Liu, S.; Zhang, N. Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network. Remote Sens. 2023, 15, 5088. https://doi.org/10.3390/rs15215088
Chang Z, Li H, Chen D, Liu Y, Zou C, Chen J, Han W, Liu S, Zhang N. Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network. Remote Sensing. 2023; 15(21):5088. https://doi.org/10.3390/rs15215088
Chicago/Turabian StyleChang, Zhu, Hu Li, Donghua Chen, Yufeng Liu, Chen Zou, Jian Chen, Weijie Han, Saisai Liu, and Naiming Zhang. 2023. "Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network" Remote Sensing 15, no. 21: 5088. https://doi.org/10.3390/rs15215088
APA StyleChang, Z., Li, H., Chen, D., Liu, Y., Zou, C., Chen, J., Han, W., Liu, S., & Zhang, N. (2023). Crop Type Identification Using High-Resolution Remote Sensing Images Based on an Improved DeepLabV3+ Network. Remote Sensing, 15(21), 5088. https://doi.org/10.3390/rs15215088