Geo-Environment Vulnerability Assessment of Multiple Geohazards Using VWT-AHP: A Case Study of the Pearl River Delta, China
Abstract
:1. Introduction
- 1.
- Propose a multi-hazard geological disaster susceptibility assessment system using the VWT-AHP method.
- 2.
- Analyze the geo-environment vulnerability in the Pearl River Delta.
- 3.
- Provide recommendations for LULC, road, and critical infrastructure planning.
2. Study Area
3. Methods and Materials
3.1. Technical Route
3.2. Database
3.2.1. Geo-Hazard Inventory
3.2.2. Assessment Indicators
3.2.3. LULC, Road, and Critical Infrastructure
3.3. Methods
3.3.1. Analytic Hierarchy Process
- Step 1: Develop a multi-level hierarchical structure model.
- Step 2: Conduct pairwise comparisons of factors and formulate judgment matrices.
- Step 3: Determine factor weights and perform consistency checks.
3.3.2. Variable Weight Theory
3.3.3. Assessment Unit Segmentation
3.3.4. Weight Determination and Comprehensive Index Calculation
3.3.5. Geo-Environment Vulnerability Assessment
4. Results and Discussion
4.1. Geohazard Susceptibility
4.1.1. Landslide and Collapse Susceptibility
4.1.2. Debris Flow Susceptibility
4.1.3. Karst Collapse Susceptibility
4.1.4. Ground Subsidence Susceptibility
4.1.5. Soil Erosion Susceptibility
4.1.6. Sea Water Intrusion Susceptibility
4.2. Geo-Environment Vulnerability
4.3. Accuracy of Assessment Results
4.4. Single-Indicator Sensitivity Analysis
4.5. Geo-Hazard Prevention Strategies
4.6. Limitation and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.C.; Zhang, F.; Zhang, J.Q.; Guo, E.L.; Liu, X.P.; Tong, Z.J. Research on the Geological Disaster Forecast and Early Warning Model Based on the Optimal Combination Weighing Law and Extension Method: A Case Study in China. Polish J. Environ. Stud. 2017, 26, 2385–2395. [Google Scholar] [CrossRef]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ. 2005, 98, 284–303. [Google Scholar] [CrossRef]
- Wang, H.; Qian, G.Q.; Tordesillas, A. Modeling big spatio-temporal geo-hazards data for forecasting by error-correction cointegration and dimension-reduction. Spatial Stat. 2020, 36, 100432. [Google Scholar] [CrossRef]
- Yanar, T.; Kocaman, S.; Gokceoglu, C. Use of Mamdani Fuzzy Algorithm for Multi-Hazard Susceptibility Assessment in a Developing Urban Settlement (Mamak, Ankara, Turkey). ISPRS Int. J. Geo-Inf. 2020, 9, 114. [Google Scholar] [CrossRef]
- Detree, C.; Navarro, J.M.; Font, A.; Gonzalez, M. Species vulnerability under climate change: Study of two sea urchins at their distribution margin. Sci. Total Environ. 2020, 728, 138850. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef]
- Marshall, D.J.; Pettersen, A.K.; Bode, M.; White, C.R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 2020, 4, 406. [Google Scholar] [CrossRef]
- Maru, Y.T.; Smith, M.S.; Sparrow, A.; Pinho, P.F.; Dube, O.P. A linked vulnerability and resilience framework for adaptation pathways in remote disadvantaged communities. Glob. Environ. Chang. 2014, 28, 337–350. [Google Scholar] [CrossRef]
- Stevenazzi, S.; Bonfanti, M.; Masetti, M.; Nghiem, S.V.; Sorichetta, A. A versatile method for groundwater vulnerability projections in future scenarios. J. Environ. Manag. 2017, 187, 365–374. [Google Scholar] [CrossRef]
- Talukdar, S.; Pal, S. Wetland habitat vulnerability of lower Punarbhaba river basin of the uplifted Barind region of Indo-Bangladesh. Geocarto Int. 2020, 35, 857–886. [Google Scholar] [CrossRef]
- Yin, L.Z.; Zhu, J.; Li, W.S.; Wang, J.H. Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China. ISPRS Int. J. Geo-Inf. 2022, 11, 342. [Google Scholar] [CrossRef]
- Margat, J. Vulnerability of Groundwater to Pollution; BRGM: Orléans, France, 1968. [Google Scholar]
- Timmerman, P. Vulnerability, Resilience and the Collapse of Society: A Review of Models and Possible Climatic Application; Institute for Environmental Studies: Toronto, ON, Canada, 1981. [Google Scholar]
- Smit, B.; Burton, I.; Klein, R.J.T.; Street, R. The Science of Adaptation: A Framework for Assessment. Mitig. Adapt. Strateg. Glob. Chang. 1999, 4, 199–213. [Google Scholar] [CrossRef]
- Huang, Y.Z. Reserch on the Vulnerability of Geological Environment and Its Countermeasures in Lijiang. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2010. (In Chinese). [Google Scholar]
- Ma, C.M.; Wu, X.Y.; Li, B.; Gao, L.; Li, Q. The vulnerability evaluation of regional geo-environment: A case study in Beihai City, China. Environ. Earth Sci. 2019, 78, 129. [Google Scholar] [CrossRef]
- Arnous, M.O.; Green, D.R. GIS and remote sensing as tools for conducting geo-hazards risk assessment along Gulf of Aqaba coastal zone, Egypt. J. Coast. Conserv. 2011, 15, 457–475. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Gayen, A.; Edalat, M.; Zarafshar, M.; Tiefenbacher, J.P. Is multi-hazard mapping effective in assessing natural hazards and integrated watershed management? Geosci. Front. 2020, 11, 1203–1217. [Google Scholar] [CrossRef]
- Ma, C.M.; Yan, W.; Hu, X.J.; Kuang, H. Geo-environment risk assessment in Zhengzhou City, China. Geomat. Nat. Hazards Risk 2020, 11, 40–70. [Google Scholar] [CrossRef]
- Chang, M.; Dou, X.Y.; Tang, L.L.; Xu, H.Z. Risk assessment of multi-disaster in Mining Area of Guizhou, China. Int. J. Disaster Risk Reduct. 2022, 78, 103128. [Google Scholar] [CrossRef]
- Li, P.X.; Wang, B.; Chen, P.; Zhang, Y.L.; Zhao, S.H. Vulnerability assessment of the eco-geo-environment of mining cities in arid and semi-arid areas: A case study from Zhungeer, China. Ecol. Indic. 2023, 152, 110364. [Google Scholar] [CrossRef]
- Jie, M.L.; Ju, N.P.; Zhao, J.J.; Fan, Q.; He, C.Y. Comparative analysis on classification methods of geological disaster susceptibility assessment. Geomat. Inf. Sci. Wuhan Univ. 2021, 45, 1003–1014. (In Chinese) [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Wei, H.; Pierre-Yves, H.; Xu, Q.; Theo, V.; Wang, G.H. Experimental Study of Fluidized Landslide. In Proceedings of the 4th World Landslide Forum, Ljubljana, Slovenia, 29 May–2 June 2017; pp. 477–479. [Google Scholar] [CrossRef]
- Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility evaluation and hazard zonation techniques—A review. Geoenviron. Disasters 2020, 7, 18. [Google Scholar] [CrossRef]
- Das, G.; Lepcha, K. Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of Darjeeling Himalaya, India. SN Appl. Sci. 2019, 1, 1453. [Google Scholar] [CrossRef]
- Papadopoulou-Vrynioti, K.; Bathrellos, G.D.; Skilodimou, H.D.; Kaviris, G.; Makropoulos, K. Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng. Geol. 2013, 158, 77–88. [Google Scholar] [CrossRef]
- Kontoes, C.; Loupasakis, C.; Papoutsis, I.; Alatza, S.; Poyiadji, E.; Ganas, A.; Psychogyiou, C.; Kaskara, M.; Antoniadi, S.; Spanou, N. Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data. Land 2021, 10, 402. [Google Scholar] [CrossRef]
- Li, Y.M.; Deng, X.L.; Ji, P.K.; Yang, Y.M.; Jiang, W.X.; Zhao, Z.F. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Int. J. Environ. Res. Public Health 2022, 19, 14248. [Google Scholar] [CrossRef]
- Wang, G.L.; Hao, J.Y.; Wen, H.J.; Cao, C. A random forest model of karst ground collapse susceptibility based on factor and parameter coupling optimization. Geocarto Int. 2022, 37, 15548–15567. [Google Scholar] [CrossRef]
- Yu, H.R.; Arabameri, A.; Costache, R.; Craciun, A.; Arora, A. Land subsidence susceptibility assessment using advanced artificial intelligence models. Geocarto Int. 2022, 37, 18067–18093. [Google Scholar] [CrossRef]
- Cui, H.; Ma, C.M.; Tan, X.F.; Chen, H.N.; Hu, B.; Xu, S.M.; Tan, X.Q.; Zhang, Y. Evaluation of Jining mining subsidence susceptibility based on three multiple-criteria decision analysis methods. Geocarto Int. 2023, 38, 2248069. [Google Scholar] [CrossRef]
- Raghuvanshi, T.K.; Ibrahim, J.; Ayalew, D. Slope stability susceptibility evaluation parameter (SSEP) rating scheme—An approach for landslide hazard zonation. J. Afr. Earth Sci. 2014, 99, 595–612. [Google Scholar] [CrossRef]
- Kumar, R.; Dwivedi, S.B.; Gaur, S. A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential mapping in the data-scarce region. Comput. Geosci. 2021, 155, 104855. [Google Scholar] [CrossRef]
- Schey, C.; Krabbe, P.F.M.; Postma, M.J.; Connolly, M.P. Multi-criteria decision analysis (MCDA): Testing a proposed MCDA framework for orphan drugs. Orphanet J. Rare Dis. 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.S.; Lee, D.R. The spatial MCDA approach for evaluating flood damage reduction alternatives. KSCE J. Civ. Eng. 2009, 13, 359–369. [Google Scholar] [CrossRef]
- Tadesse, T.B.; Tefera, S.A. Comparing potential risk of soil erosion using RUSLE and MCDA techniques in Central Ethiopia. Model. Earth Syst. Environ. 2021, 7, 1713–1725. [Google Scholar] [CrossRef]
- Maciol, A.; Rebiasz, B. Multicriteria Decision Analysis (Mcda) Methods in Life Cycle Assessment (Lca). A Comparison of Private Passenger Vehicles. Oper. Res. Decis. 2018, 28, 5–26. [Google Scholar] [CrossRef]
- Tangestani, M.H. Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran. Aust. J. Earth Sci. 2004, 51, 439–450. [Google Scholar] [CrossRef]
- Jabbar, F.K.; Grote, K.; Tucker, R.E. A novel approach for assessing watershed susceptibility using weighted overlay and analytical hierarchy process (AHP) methodology: A case study in Eagle Creek Watershed, USA. Environ. Sci. Pollut. Res. 2019, 26, 31981–31997. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach. Oper. Res. 2013, 61, 1101–1118. [Google Scholar] [CrossRef]
- Basu, T.; Pal, S. A GIS-based factor clustering and landslide susceptibility analysis using AHP for Gish River Basin, India. Environ. Dev. Sustain. 2020, 22, 4787–4819. [Google Scholar] [CrossRef]
- Chen, W.; Han, H.X.; Huang, B.; Huang, Q.L.; Fu, X.D. Variable-Weighted Linear Combination Model for Landslide Susceptibility Mapping: Case Study in the Shennongjia Forestry District, China. ISPRS Int. J. Geo-Inf. 2017, 6, 347. [Google Scholar] [CrossRef]
- Shu, B.R.; Bakker, M.M.; Zhang, H.H.; Li, Y.L.; Qin, W.; Carsjens, G.J. Modeling urban expansion by using variable weights logistic cellular automata: A case study of Nanjing, China. Int. J. Geogr. Inf. Sci. 2017, 31, 1314–1333. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, D.K.; Wang, Y.; Shen, J.J.; Mu, W.P.; Liu, H.L. Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory. Hydrogeol. J. 2017, 25, 2089–2103. [Google Scholar] [CrossRef]
- Hou, J.D.; Lv, J.; Chen, X.; Yu, S.W. China’s regional social vulnerability to geological disasters: Evaluation and spatial characteristics analysis. Nat. Hazards 2016, 84, S97–S111. [Google Scholar] [CrossRef]
- Cui, Q.L.; Wu, H.N.; Shen, S.L.; Xu, Y.S.; Ye, G.L. Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves. Nat. Hazards 2015, 77, 129–152. [Google Scholar] [CrossRef]
- Du, Y.N.; Feng, G.C.; Liu, L.; Fu, H.Q.; Peng, X.; Wen, D.B. Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data. Remote Sens. 2020, 12, 299. [Google Scholar] [CrossRef]
- Liu, X.L.; Chen, H.Z. Integrated assessment of ecological risk for multi-hazards in Guangdong province in southeastern China. Geomat. Nat. Hazards Risk 2019, 10, 2069–2093. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Xie, J.B.; Zhang, J.G.; Liang, H.X.; Qiu, Y.; Xia, Z.; Ling, Q.X.; Lin, J.A.; Zhou, H.Y. Characteristics of geological hazards in South China coastal areas and impact on regional sustainable development. Int. J. Sustain. Dev. World Ecol. 2007, 14, 421–427. [Google Scholar] [CrossRef]
- GPDPRYEC. Guangdong Province Disaster Prevention and Reduction Yearbook; South China University of Technology Press: Guangzhou, China, 2010. (In Chinese) [Google Scholar]
- Zeng, M.; Liu, F.M. The main geo-environment problems and countermeasure research of the coastal zone of Pearl River Estuary. In AER—Advances in Engineering Research, 4th International Conference on Sustainable Energy and Environmental Engineering (ICSEEE), Shenzhen, China, 20–21 December 2015; Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 942–946. [Google Scholar]
- Zhang, H.R.; Zhang, G.F.; Jia, Q.W. Integration of Analytical Hierarchy Process and Landslide Susceptibility Index Based Landslide Susceptibility Assessment of the Pearl River Delta Area, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4239–4251. [Google Scholar] [CrossRef]
- Dou, J.; Zheng, X.Z.; Qian, J.P.; Liu, R.H.; Wu, Q.T. Intelligence Based Automatic Detection and Classification of Ground Collapses Using Object-Based Image Analysis Method: A Case Study in Paitan of Pearl River Delta. In Geoinformatics 2008 and Joint Conference on GIS and Built Environment—Advanced Spatial Data Models and Analyses; SPIE: Bellingham, WA, USA, 2008. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Ng, A.H.M.; Wang, H.; Chen, J.W.; Du, Z.Y.; Ge, L.L. Land subsidence modeling and assessment in the West Pearl River Delta from combined InSAR time series, land use and geological data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103228. [Google Scholar] [CrossRef]
- Lin, K.R.; Lu, P.Y.; Xu, C.Y.; Yu, X.; Lan, T.; Chen, X.H. Modeling saltwater intrusion using an integrated Bayesian model averaging method in the Pearl River Delta. J. Hydroinf. 2019, 21, 1147–1162. [Google Scholar] [CrossRef]
- Geospatial Data Cloud. Available online: https://www.gscloud.cn/ (accessed on 4 July 2023). (In Chinese).
- Soil Science Database. Available online: http://vdb3.soil.csdb.cn/ (accessed on 4 July 2023). (In Chinese).
- Li, Y.Y.; Sheng, Y.F.; Chai, B.; Zhang, W.; Zhang, T.L.; Wang, J.J. Collapse susceptibility assessment using a support vector machine compared with back-propagation and radial basis function neural networks. Geomat. Nat. Hazards Risk 2020, 11, 510–534. [Google Scholar] [CrossRef]
- Psomiadis, E.; Papazachariou, A.; Soulis, K.X.; Alexiou, D.S.; Charalampopoulos, I. Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data. Land 2020, 9, 133. [Google Scholar] [CrossRef]
- Qasimi, A.B.; Isazade, V.; Enayat, E.; Nadry, Z.; Majidi, A.H. Landslide susceptibility mapping in Badakhshan province, Afghanistan: A comparative study of machine learning algorithms. Geocarto Int. 2023, 38, 2248082. [Google Scholar] [CrossRef]
- Pandey, A.; Sarkar, M.S.; Palni, S.; Parashar, D.; Singh, G.; Kaushik, S.; Chandra, N.; Costache, R.; Singh, A.P.; Mishra, A.P.; et al. Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya. Geomat. Nat. Hazards Risk 2023, 14, 2227324. [Google Scholar] [CrossRef]
- Basharat, M.; Khan, J.A.; Abdo, H.G.; Almohamad, H. An integrated approach based landslide susceptibility mapping: Case of Muzaffarabad region, Pakistan. Geomat. Nat. Hazards Risk 2023, 14, 2210255. [Google Scholar] [CrossRef]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Bouzerda, M.; Mehdi, K.; Fadili, A.; Boualla, O. Collapse dolines susceptibility mapping using frequency ratio method and GIS in Sahel-Doukkala, Morocco. Model. Earth Syst. Environ. 2020, 6, 349–362. [Google Scholar] [CrossRef]
- Bregoli, F.; Medina, V.; Chevalier, G.; Hurlimann, M.; Bateman, A. Debris-flow susceptibility assessment at regional scale: Validation on an alpine environment. Landslides 2015, 12, 437–454. [Google Scholar] [CrossRef]
- Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy). Geomorphology 2017, 288, 52–65. [Google Scholar] [CrossRef]
- Kang, S.; Lee, S.R. Debris flow susceptibility assessment based on an empirical approach in the central region of South Korea. Geomorphology 2018, 308, 1–12. [Google Scholar] [CrossRef]
- Shen, C.W.; Lo, W.C.; Chen, C.Y. Evaluating Susceptibility of Debris Flow Hazard using Multivariate Statistical Analysis in Hualien County. Disaster Adv. 2012, 5, 743–755. [Google Scholar]
- Qin, S.W.; Lv, J.F.; Cao, C.; Ma, Z.J.; Hu, X.Y.; Liu, F.; Qiao, S.S.; Dou, Q. Mapping debris flow susceptibility based on watershed unit and grid cell unit: A comparison study. Geomat. Nat. Hazards Risk 2019, 10, 1648–1666. [Google Scholar] [CrossRef]
- Mehmood, Q.; Qing, W.; Chen, J.P.; Yan, J.H.; Ammar, M.; Rahman, G. Nasrullah Susceptibility Assessment of Single Gully Debris Flow Based on AHP and Extension Method. Civil Eng. J. Tehran 2021, 7, 953–973. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.S.; Lin, Y.L. Debris-flow susceptibility assessment in Dongchuan using stacking ensemble learning including multiple heterogeneous learners with RFE for factor optimization. Nat. Hazards 2023, 118, 2477–2511. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, W.B.; Liao, Z.Y.; Xie, H.P.; Zhou, C.T.; Chen, S.G.; Zhu, J.B. Risk assessment of ground collapse along tunnels in karst terrain by using an improved extension evaluation method. Tunnell. Underground Space Technol. 2022, 129, 104669. [Google Scholar] [CrossRef]
- Xie, Y.H.; Zhang, B.H.; Liu, Y.X.; Liu, B.C.; Zhang, C.F.; Lin, Y.S. Evaluation of the Karst Collapse Susceptibility of Subgrade Based on the AHP Method of ArcGIS and Prevention Measures: A Case Study of the Quannan Expressway, Section K1379+300-K1471+920. Water 2022, 14, 1432. [Google Scholar] [CrossRef]
- Kim, Y.J.; Nam, B.H.; Shamet, R.; Soliman, M.; Youn, H. Development of Sinkhole Susceptibility Map of East Central Florida. Nat. Hazards Rev. 2020, 21, 04020035. [Google Scholar] [CrossRef]
- Tomas, R.; Romero, R.; Mulas, J.; Marturia, J.J.; Mallorqui, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutierrez, F.; Gonzalez, P.J.; Fernandez, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Catalao, J.; Nico, G.; Lollino, P.; Conde, V.; Lorusso, G.; Silva, C. Integration of InSAR Analysis and Numerical Modeling for the Assessment of Ground Subsidence in the City of Lisbon, Portugal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1663–1673. [Google Scholar] [CrossRef]
- Bianchini, S.; Solari, L.; Del Soldato, M.; Raspini, F.; Montalti, R.; Ciampalini, A.; Casagli, N. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sens. 2019, 11, 2015. [Google Scholar] [CrossRef]
- Lee, S.; Park, I.; Choi, J.K. Spatial Prediction of Ground Subsidence Susceptibility Using an Artificial Neural Network. Environ. Manage. 2012, 49, 347–358. [Google Scholar] [CrossRef]
- Ghasemi, A.; Bahmani, O.; Akhavan, S.; Pourghasemi, H.R. Investigation of land-subsidence phenomenon and aquifer vulnerability using machine models and GIS technique. Nat. Hazards 2023, 118, 1645–1671. [Google Scholar] [CrossRef]
- Mohammadifar, A.; Gholami, H.; Golzari, S. Stacking- and voting-based ensemble deep learning models (SEDL and VEDL) and active learning (AL) for mapping land subsidence. Environ. Sci. Pollut. Res. 2023, 30, 26580–26595. [Google Scholar] [CrossRef]
- Magliulo, P. Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach. Environ. Earth Sci. 2012, 67, 1801–1820. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Fries, A.; Mejia, D.; Burneo, J.I.; Ruiz-Sinoga, J.D.; Cerda, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Torra, O.; Hurlimann, M.; Puig-Polo, C.; Moreno-de-las-Heras, M. Assessment of badland susceptibility and its governing factors using a random forest approach. Application to the Upper Llobregat River Basin and Catalonia (Spain). Environ. Res. 2023, 237, 116901. [Google Scholar] [CrossRef]
- Ouallali, A.; Bouhsane, N.; Bouhlassa, S.; Moukhchane, M.; Ayoubi, S.; Aassoumi, H. Rapid magnetic susceptibility measurement as a tracer to assess the erosion-deposition process using tillage homogenization and simple proportional models: A case study in northern of Morocco. Int. J. Sediment Res. 2023, 38, 739–753. [Google Scholar] [CrossRef]
- Aboutaib, F.; Krimissa, S.; Pradhan, B.; Elaloui, A.; Ismaili, M.; Abdelrahman, K.; Eloudi, H.; Ouayah, M.; Ourribane, M.; Namous, M. Evaluating the effectiveness and robustness of machine learning models with varied geo-environmental factors for determining vulnerability to water flow-induced gully erosion. Front. Environ. Sci. 2023, 11, 1207027. [Google Scholar] [CrossRef]
- Klassen, J.; Allen, D.M. Assessing the risk of saltwater intrusion in coastal aquifers. J. Hydrol. 2017, 551, 730–745. [Google Scholar] [CrossRef]
- Kazakis, N.; Busico, G.; Colombani, N.; Mastrocicco, M.; Pavlou, A.; Voudouris, K. GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. J. Environ. Manag. 2019, 235, 257–265. [Google Scholar] [CrossRef]
- Sujitha, V.; Purandara, B.K.; Shivapur, A.V.; Davithuraj, J. Assessment of Aquifer Vulnerability Using GALDIT Model–A Case Study. J. Geol. Soc. India 2020, 95, 507–512. [Google Scholar] [CrossRef]
- Bordbar, M.; Khosravi, K.; Murgulet, D.; Tsai, F.T.C.; Golkarian, A. The use of hybrid machine learning models for improving the GALDIT model for coastal aquifer vulnerability mapping. Environ. Earth Sci. 2022, 81, 402. [Google Scholar] [CrossRef]
- Pham, N.Q.; Ta, T.T.; Tran, L.; Nguyen, T.T. Assessment of seawater intrusion vulnerability of coastal aquifers in context of climate change and sea level rise in the central coastal plains, Vietnam. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Myronidis, D.; Papageorgiou, C.; Theophanous, S. Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat. Hazards 2016, 81, 245–263. [Google Scholar] [CrossRef]
- Wei, A.H.; Li, D.; Zhou, Y.H.; Deng, Q.; Yan, L.D. A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model. Nat. Hazards 2021, 105, 405–430. [Google Scholar] [CrossRef]
- Deros, S.N.M.; Din, N.M.; Norzeli, S.M.; Omar, R.C.; Usman, F.; Hamim, S.A. Land Subsidence Susceptibility Projection for Palembang Slum Area by Complex MCDM-AHP Technique. J. Eng. Technol. Sci. 2022, 54, 220104. [Google Scholar] [CrossRef]
- Vijith, H.; Dodge-Wan, D. Modelling terrain erosion susceptibility of logged and regenerated forested region in northern Borneo through the Analytical Hierarchy Process (AHP) and GIS techniques. Geoenviron. Disasters 2019, 6, 8. [Google Scholar] [CrossRef]
- Saravanan, S.; Pitchaikani, S.; Thambiraja, M.; Sathiyamurthi, S.; Sivakumar, V.; Velusamy, S.; Shanmugamoorthy, M. Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Environ. Monit. Assess. 2023, 195, 57. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 6 October 2023).
- Zhang, L.X.; Wang, Y.W.; Zhang, J.K.; Zhang, S.; Guo, Q.L. Rockfall hazard assessment of the slope of Mogao Grottoes, China based on AHP, F-AHP and AHP-TOPSIS. Environ. Earth Sci. 2022, 81, 377. [Google Scholar] [CrossRef]
- Sinha, A.; Nikhil, S.; Ajin, R.S.; Danumah, J.H.; Saha, S.; Costache, R.; Rajaneesh, A.; Sajinkumar, K.S.; Amrutha, K.; Johny, A.; et al. Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models. Fire 2023, 6, 44. [Google Scholar] [CrossRef]
- Lyu, H.M.; Zhou, W.H.; Shen, S.L.; Zhou, A.N. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 102103. [Google Scholar] [CrossRef]
- Biswas, B.; Ghosh, A.; Sailo, B.L. Spring water suitable and vulnerable watershed demarcation using AHP-TOPSIS and AHP-VIKOR models: Study on Aizawl district of North-Eastern hilly state of Mizoram, India. Environ. Earth Sci. 2023, 82, 80. [Google Scholar] [CrossRef]
- Feizi, Z. Efficiency Assessment of AHP and Fuzzy AHP in Suitability Mapping for Artificial Recharging (Case Study: South of Kashan Basin, Isfahan, Iran). In Sustainable Energy-Water-Environment Nexus in Desert Climates, Proceedings of the First International Conference on Sustainable Energy-Water-Environment Nexus in Desert Climate, Doha, Qatar, 2–5 December 2019; Springer: Cham, Switzerland, 2022; pp. 59–70. [Google Scholar] [CrossRef]
- Unver, S.; Ergenc, I. Safety risk identification and prioritize of forest logging activities using analytic hierarchy process (AHP). Alex. Eng. J. 2021, 60, 1591–1599. [Google Scholar] [CrossRef]
- Wang, P.Z. Fuzzy Set and Random Set Shadow; Beijing Normal University Press: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Wang, B.; Fan, T.Y.; Liu, M.Q.; Wang, F.Q.; Nie, X.T. Evaluation of management level of water conservancy construction supervision unit based on variable weight fuzzy theory. Desalin. Water Treat. 2019, 152, 66–74. [Google Scholar] [CrossRef]
- Han, F.; Liu, Z.L.; Wang, C.X. Research on a Comfort Evaluation Model for High-Speed Trains Based on Variable Weight Theory. Appl. Sci. 2023, 13, 3144. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, X.; Yan, F. The pollution scale weighting model in water quality evaluation based on the improved fuzzy variable theory. Ecol. Indic. 2022, 135, 108562. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.P.; Cheng, S.; Liu, Z.H.; Ding, R.S.; You, Q. Model on Improved Variable Weight-Matter Element Theory for Risk Assessment of Water Inrush in Karst Tunnels. Geotech. Geol. Eng. 2021, 39, 3533–3548. [Google Scholar] [CrossRef]
- Ma, C.M.; Li, Y.G.; Li, X.; Gao, L. Evaluation of groundwater sustainable development considering seawater intrusion in Beihai City, China. Environ. Sci. Pollut. Res. 2020, 27, 4927–4943. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhuo, L.; Pregnolato, M.; Han, D.W. An assessment of statistical interpolation methods suited for gridded rainfall datasets. Int. J. Climatol. 2022, 42, 2754–2772. [Google Scholar] [CrossRef]
- Febrianto, H.; Fariza, A.; Hasim, J.A.N. Urban Flood Risk Mapping Using Analytic Hierarchy Process and Natural Break Classification. In Proceedings of the 5th International Conference on Knowledge Creation and Intelligent Computing (KCIC), Manado, Indonesia, 15–17 November 2016; pp. 148–154. [Google Scholar]
- Khamis, N.; Sin, T.C.; Hock, G.C. Segmentation of Residential Customer Load Profile in Peninsular Malaysia using Jenks Natural Breaks. In Proceedings of the 7th IEEE International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, 3–4 December 2018; pp. 128–131. [Google Scholar]
- Li, B.H.; Liu, K.; Wang, M.; He, Q.; Jiang, Z.Y.; Zhu, W.H.; Qiao, N.N. Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. Remote Sens. 2022, 14, 5795. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Taheri, K.; Missimer, T.M.; Mohseni, H.; Fidelibus, M.D.; Fathollahy, M.; Taheri, M. Enhancing spatial prediction of sinkhole susceptibility by mixed waters geochemistry evaluation: Application of ROC and GIS. Environ. Earth Sci. 2021, 80, 470. [Google Scholar] [CrossRef]
- Liu, G.X.; Zhang, Y.C.; Zhang, J.Q.; Lang, Q.L.; Chen, Y.A.; Wan, Z.Y.; Liu, H.A. Geographic-Information-System-Based Risk Assessment of Flooding in Changchun Urban Rail Transit System. Remote Sens. 2023, 15, 3533. [Google Scholar] [CrossRef]
- Shawky, M.; Hassan, Q.K. Geospatial Modeling Based-Multi-Criteria Decision-Making for Flash Flood Susceptibility Zonation in an Arid Area. Remote Sens. 2023, 15, 2561. [Google Scholar] [CrossRef]
- Huang, P.; Ma, C.M.; Zhou, A.G. Assessment of groundwater sustainable development considering geo-environment stability and ecological environment: A case study in the Pearl River Delta, China. Environ. Sci. Pollut. Res. 2022, 29, 18010–18035. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhamid, H.F. Investigation and control of seawater intrusion in the Eastern Nile Delta aquifer considering climate change. Water Sci. Technol. Water Supply 2017, 17, 311–323. [Google Scholar] [CrossRef]
- Intui, S.; Inazumi, S.; Soralump, S. Sustainability of Soil/Ground Environment under Changes in Groundwater Level in Bangkok Plain, Thailand. Sustainability 2022, 14, 10908. [Google Scholar] [CrossRef]
- Paulin, G.L.; Pouget, S.; Bursik, M.; Quesada, F.A.; Contreras, T. Comparing landslide susceptibility models in the Rio El Estado watershed on the SW flank of Pico de Orizaba volcano, Mexico. Nat. Hazards 2016, 80, 127–139. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [Google Scholar] [CrossRef]
Geohazard Susceptibility | Assessment Indicator | Data Type | Resolution | Temporal Coverage | Source |
---|---|---|---|---|---|
Landslide and collapse (A1) | Elevation (B11) | TIFF | 30 m × 30 m | / | Geospatial Data Cloud [59] |
Slope (B12) | TIFF | 30 m × 30 m | / | / | |
Lithology (B13) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Topography (B14) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Distance to fault (B15) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Distance to river (B16) | Shapefile (Polygon) | / | 2020 | Google Earth | |
Precipitation (B17) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute | |
Debris flow (A2) | Elevation (B21) | TIFF | 30 m × 30 m | / | Geospatial Data Cloud [59] |
Slope (B22) | TIFF | 30 m × 30 m | / | / | |
Lithology (B23) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Topography (B24) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Distance to fault (B25) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Distance to river (B26) | Shapefile (Polygon) | / | 2020 | Google Earth | |
Distance to landslide and collapse (B27) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Precipitation(B28) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute | |
Karst collapse (A3) | Lithology (B31) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute |
Degree of karst development (B32) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Thickness of overlying layer (B33) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Water yield property (B34) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute | |
Distance to fault (B35) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Ground subsidence (A4) | Thickness of soft soil layer (B41) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute |
Age of soft soil layer (B42) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Water yield property (B43) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute | |
Distance to fault (B44) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Soil erosion (A5) | Slope (B51) | TIFF | 30 m × 30 m | / | / |
Topography (B52) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Type of vegetation (B53) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute | |
Type of soil (B54) | Shapefile (Polygon) | / | 2020 | Soil Science Database [60] | |
Distance to river (B55) | Shapefile (Polygon) | / | 2020 | Google Earth | |
Precipitation (B56) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute | |
Sea water intrusion (A6) | Topography (B61) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute |
Type of Quaternary sedimentary rock (B62) | Shapefile (Polygon) | / | / | Guangdong Geological Survey Institute | |
Groundwater level (B63) | TIFF | 30 m × 30 m | 2020 | Guangdong Geological Survey Institute | |
Precipitation (B64) | Shapefile (Polygon) | / | 2020 | Guangdong Geological Survey Institute |
Geohazard Susceptibility | Assessment Indicator | Rating | |||
---|---|---|---|---|---|
0.9 | 0.7 | 0.3 | 0.1 | ||
Landslide and collapse (A1) | Elevation (B11) | >400 m | 200–400 m | 80–200 m | <80 m |
Slope (B12) | >20° | 10°–20° | 5°–10° | <5° | |
Lithology (B13) | Metamorphic rock; clastic rock; sand shale | Carbonate rock; carbonate mudstone | Massive rock; massive lava | Mucky soil; cohesive soil | |
Topography (B14) | Mountainous area; hilly area (>200 m) | Hilly area (<200 m); volcanic hilly area; tableland (>20 m) | Tableland (10–20 m); lacustrine plain | Tableland (<10 m); beach; fluvial plain; marine depositional plain; delta plain | |
Distance to fault (B15) | <2 km | 2–4 km | 4–6 km | >6 km | |
Distance to river (B16) | <0.5 km | 0.5–1 km | 1–1.5 km | >1.5 km | |
Precipitation (B17) | >2400 mm | 2000–2400 mm | 1600–2000 mm | <1600 mm | |
Debris flow (A2) | Elevation (B21) | >600 m | 300–600 m | 100–300 m | <100 m |
Slope (B22) | >20° | 10°–20° | 5°–10° | <5° | |
Lithology (B23) | Mucky soil; cohesive soil | Metamorphic rock; clastic rock; sand shale | Carbonate rock; carbonate mudstone | Massive rock; massive lava | |
Topography (B24) | Mountainous area; hilly area (>200 m) | Hilly area (<200 m); volcanic hilly area; tableland (>20 m) | Tableland (10–20 m); lacustrine plain | Tableland (<10 m); beach; fluvial plain; marine depositional plain; delta plain | |
Distance to fault (B25) | <2 km | 2–4 km | 4–6 km | >6 km | |
Distance to river (B26) | <0.5 km | 0.5–1 km | 1–1.5 km | >1.5 km | |
Distance to landslide and collapse (B27) | <2 km | 2–4 km | 4–6 km | >6 km | |
Precipitation(B28) | >2400 mm | 2000–2400 mm | 1600–2000 mm | <1600 mm | |
Karst collapse (A3) | Lithology (B31) | / | Carbonate rock | Argillaceous limestone; sandstone; basalt | Mudstone; shale; silly slate |
Degree of karst development (B32) | / | Strong | Moderate | Poor | |
Thickness of overlying layer (B33) | / | <10 m | 10–20 m | >20 m | |
Water yield property (B34) | / | >1000 m3/d | 100–1000 m3/d | <100 m3/d | |
Distance to fault (B35) | / | <2 km | 2–4 km | >4 km | |
Ground subsidence (A4) | Thickness of soft soil layer (B41) | / | >20 m | 10–20 m | <10 m |
Age of soft soil layer (B42) | / | Holocene alluvial deposits; Holocene residual deposits | Holocene Dawanzhen Formation; Holocene Mugao Formation | Holocene Guizhou Formation; Upper Pleistocene deposits | |
Water yield property (B43) | / | >1000 m3/d | 100–1000 m3/d | <100 m3/d | |
Distance to fault (B44) | / | <2 km | 2–4 km | >4 km | |
Soil erosion (A5) | Slope (B51) | >20° | 10°–20° | 5°–10° | <5° |
Topography (B52) | Mountainous area; hilly area (>200 m) | Hilly area (<200 m); volcanic hilly area; tableland (>20 m) | Tableland (10–20 m); lacustrine plain | Tableland (<10 m); beach; fluvial plain; marine depositional plain; delta plain | |
Type of vegetation (B53) | Sandy land; urban land | Arable land | Grassland; economic forest land; protective forest land | Arbor land; shrub land | |
Type of soil (B54) | Latosolic red soil | Alluvial soil | Red soil | Paddy soil | |
Distance to river (B55) | <0.5 km | 0.5–1 km | 1–1.5 km | >1.5 km | |
Precipitation (B56) | >2400 mm | 2000–2400 mm | 1600–2000 mm | <1600 mm | |
Sea water intrusion (A6) | Topography (B61) | Tableland (<10 m); beach; fluvial plain; marine depositional plain; delta plain | Tableland (10–20 m); lacustrine plain | Hilly area (<200 m); volcanic hilly area; tableland (>20 m) | Mountainous area; hilly area (>200 m) |
Type of Quaternary sedimentary rock (B62) | Alluvial sandy clay | Marine clay | Proluvial clay | Bedrock | |
Groundwater level (B63) | <−2 m | −2–0 m | 0–2 m | >2 m | |
Precipitation (B64) | <1600 mm | 1600–2000 mm | 2000–2400 mm | >2400 mm |
Scale | 1 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|
Importance | Equal | Moderate | Strong | Very strong | Extreme |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.24 | 1.35 | 1.40 | 1.45 | 1.49 |
Geohazard | Method | Area | Stable | Low | Medium | High |
---|---|---|---|---|---|---|
Landslide and collapse | VWT-AHP | Area (km2) | 18,645.75 | 9688.68 | 9848.89 | 3514.68 |
Number of geohazards | 3 | 3 | 22 | 56 | ||
Density of geohazards | 0.0002 | 0.0003 | 0.0022 | 0.0159 | ||
AHP | Area (km2) | 20,079.53 | 11,597.94 | 8076.18 | 1944.34 | |
Number of geohazards | 8 | 25 | 37 | 13 | ||
Density of geohazards | 0.0004 | 0.0022 | 0.0046 | 0.0067 | ||
Debris flow | VWT-AHP | Area (km2) | 10,692.25 | 26,905.16 | 3619.66 | 480.94 |
Number of geohazards | 2 | 1 | 11 | 9 | ||
Density of geohazards | 0.0002 | 0.0000 | 0.0030 | 0.0187 | ||
AHP | Area (km2) | 14,253.97 | 19,483.31 | 6716.05 | 1244.67 | |
Number of geohazards | 5 | 6 | 9 | 3 | ||
Density of geohazards | 0.0004 | 0.0003 | 0.0013 | 0.0024 | ||
Karst collapse | VWT-AHP | Area (km2) | 36,841.23 | 1812.95 | 2553.61 | 484.94 |
Number of geohazards | 0 | 1 | 39 | 57 | ||
Density of geohazards | 0.0000 | 0.0006 | 0.0153 | 0.1175 | ||
AHP | Area (km2) | 36,841.23 | 3033.69 | 1752.37 | 65.42 | |
Number of geohazards | 0 | 24 | 62 | 11 | ||
Density of geohazards | 0.0000 | 0.0079 | 0.0354 | 0.1681 | ||
Ground subsidence | VWT-AHP | Area (km2) | 33,007.04 | 4468.67 | 3741.2 | 454.65 |
Number of geohazards | 0 | 1 | 33 | 31 | ||
Density of geohazards | 0.0000 | 0.0002 | 0.0088 | 0.0682 | ||
AHP | Area (km2) | 33,007.04 | 1109.03 | 5616.46 | 1939.02 | |
Number of geohazards | 0 | 0 | 25 | 40 | ||
Density of geohazards | 0.0000 | 0.0000 | 0.0045 | 0.0206 | ||
Soil erosion | VWT-AHP | Area (km2) | 13,081.98 | 22,743.83 | 5526.97 | 344.54 |
Area of geohazards (km2) | 71.96 | 252.77 | 627.08 | 133.84 | ||
Density of geohazards | 0.0055 | 0.0111 | 0.1135 | 0.3885 | ||
AHP | Area (km2) | 14,525.31 | 15,470.48 | 10,386.07 | 1315.47 | |
Area of geohazards (km2) | 81.36 | 180.78 | 548.36 | 275.17 | ||
Density of geohazards | 0.0056 | 0.0117 | 0.0528 | 0.2092 | ||
Sea water intrusion | VWT-AHP | Area (km2) | 22,136.74 | 14,123.59 | 4341.74 | 1095.33 |
Area of geohazards (km2) | 471.08 | 1277.44 | 1893.99 | 889.54 | ||
Density of geohazards | 0.0213 | 0.0904 | 0.4362 | 0.8121 | ||
AHP | Area (km2) | 20,285.86 | 9269.77 | 8698.65 | 3443.12 | |
Area of geohazards (km2) | 196.89 | 846.61 | 1875 | 413.55 | ||
Density of geohazards | 0.0097 | 0.0913 | 0.2156 | 0.1201 |
Geohazard Susceptibility | Assessment Indicator | Maximum | Minimum | Average | Standard Deviation |
---|---|---|---|---|---|
Landslide and collapse (A1) | Elevation (B11) | 0.6089 | 0.0133 | 0.1004 | 0.0877 |
Slope (B12) | 0.4058 | 0.0106 | 0.0492 | 0.0371 | |
Lithology (B13) | 0.8187 | 0.0280 | 0.2413 | 0.1969 | |
Topography (B14) | 0.6304 | 0.0096 | 0.1844 | 0.1407 | |
Distance to fault (B15) | 0.6512 | 0.0100 | 0.1453 | 0.1435 | |
Distance to river (B16) | 0.4906 | 0.0059 | 0.0952 | 0.0904 | |
Precipitation (B17) | 0.8034 | 0.0218 | 0.1842 | 0.1232 | |
Debris flow (A2) | Elevation (B21) | 0.3267 | 0.0063 | 0.0403 | 0.0383 |
Slope (B22) | 0.3539 | 0.0069 | 0.0318 | 0.0267 | |
Lithology (B23) | 0.6452 | 0.0112 | 0.1638 | 0.1372 | |
Topography (B24) | 0.6646 | 0.0135 | 0.2371 | 0.1696 | |
Distance to fault (B25) | 0.5780 | 0.0080 | 0.1008 | 0.0990 | |
Distance to river (B26) | 0.7111 | 0.0162 | 0.1680 | 0.1411 | |
Distance to landslide and collapse (B27) | 0.7722 | 0.0206 | 0.0960 | 0.1028 | |
Precipitation(B28) | 0.7722 | 0.0207 | 0.1621 | 0.1123 | |
Karst collapse (A3) | Lithology (B31) | 0.7268 | 0.0603 | 0.2707 | 0.1429 |
Degree of karst development (B32) | 0.7268 | 0.0587 | 0.1748 | 0.0946 | |
Thickness of overlying layer (B33) | 0.4356 | 0.0161 | 0.1288 | 0.1149 | |
Water yield property (B34) | 0.4356 | 0.0178 | 0.0852 | 0.0531 | |
Distance to fault (B35) | 0.6833 | 0.0491 | 0.3405 | 0.1852 | |
Ground subsidence (A4) | Thickness of soft soil layer (B41) | 0.7917 | 0.0747 | 0.1872 | 0.1114 |
Age of soft soil layer (B42) | 0.7683 | 0.1054 | 0.5342 | 0.1878 | |
Water yield property (B43) | 0.4935 | 0.0203 | 0.0826 | 0.0690 | |
Distance to fault (B44) | 0.6223 | 0.0376 | 0.1960 | 0.1396 | |
Soil erosion (A5) | Slope (B51) | 0.3794 | 0.0077 | 0.0398 | 0.0356 |
Topography (B52) | 0.5837 | 0.0082 | 0.1825 | 0.1612 | |
Type of vegetation (B53) | 0.8482 | 0.0295 | 0.3052 | 0.2061 | |
Type of soil (B54) | 0.8290 | 0.0305 | 0.1728 | 0.1076 | |
Distance to river (B55) | 0.7106 | 0.0152 | 0.2072 | 0.1488 | |
Precipitation (B56) | 0.6175 | 0.0089 | 0.0925 | 0.0765 | |
Sea water intrusion (A6) | Topography (B61) | 0.6626 | 0.0155 | 0.2534 | 0.1756 |
Type of Quaternary sedimentary rock (B62) | 0.7534 | 0.0240 | 0.2046 | 0.1731 | |
Groundwater level (B63) | 0.8753 | 0.0496 | 0.1346 | 0.0829 | |
Precipitation (B64) | 0.8054 | 0.0270 | 0.4074 | 0.1521 |
Stable | Low | Medium | High | |
---|---|---|---|---|
Critical infrastructure | 8 | 175 | 512 | 102 |
Road (km) | 575.43 | 10,258.47 | 16,550.36 | 3890.09 |
Artificial surface (km2) | 18.95 | 447.95 | 1653.15 | 359.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Wu, X.; Ma, C.; Zhou, A. Geo-Environment Vulnerability Assessment of Multiple Geohazards Using VWT-AHP: A Case Study of the Pearl River Delta, China. Remote Sens. 2023, 15, 5007. https://doi.org/10.3390/rs15205007
Huang P, Wu X, Ma C, Zhou A. Geo-Environment Vulnerability Assessment of Multiple Geohazards Using VWT-AHP: A Case Study of the Pearl River Delta, China. Remote Sensing. 2023; 15(20):5007. https://doi.org/10.3390/rs15205007
Chicago/Turabian StyleHuang, Peng, Xiaoyu Wu, Chuanming Ma, and Aiguo Zhou. 2023. "Geo-Environment Vulnerability Assessment of Multiple Geohazards Using VWT-AHP: A Case Study of the Pearl River Delta, China" Remote Sensing 15, no. 20: 5007. https://doi.org/10.3390/rs15205007
APA StyleHuang, P., Wu, X., Ma, C., & Zhou, A. (2023). Geo-Environment Vulnerability Assessment of Multiple Geohazards Using VWT-AHP: A Case Study of the Pearl River Delta, China. Remote Sensing, 15(20), 5007. https://doi.org/10.3390/rs15205007