Cloud-to-Ground and Intra-Cloud Nowcasting Lightning Using a Semantic Segmentation Deep Learning Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Rader Data
2.1.2. Lightning Data
2.1.3. Construction of the Dataset
2.2. Methodology
2.2.1. Neural Network
2.2.2. Model Training, Validation, and Testing
2.2.3. Evaluation
3. Results
3.1. Skill Metrics
3.2. Case Study
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynn, B.H.; Yair, Y.; Price, C.; Kelman, G.; Clark, A.J. Predicting cloud-to-ground and intracloud lightning in weather forecast models. Wea. Forecast. 2012, 27, 1470–1488. [Google Scholar] [CrossRef]
- Gatlin, P.N.; Goodman, S.J. A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Ocean. Technol. 2010, 27, 3–22. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Wicker, L.J.; Xue, M.; Dawson, D.T.; Yussouf, N.; Wheatley, D.W.; Thompson, T.E.; Snook, N.A.; Smith, T.M.; Schenkman, A.D.; et al. Progress and challenges with warn-on-forecast. Atmos. Res. 2013, 123, 2–16. [Google Scholar] [CrossRef]
- Farnell, C.; Rigo, T.; Pineda, N. Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia. Atmos. Res. 2017, 183, 130–141. [Google Scholar] [CrossRef]
- Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Kinematic and microphysical significance of lightning jumps versus nonjump increases in total flash rate. Wea. Forecast. 2017, 32, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.; Wiener, G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Ocean. Technol. 1993, 10, 785–797. [Google Scholar] [CrossRef]
- Johnson, J.T.; MacKeen, P.L.; Witt, A.; Mitchell, E.D.W.; Stumpf, G.J.; Eilts, M.D.; Thomas, K.W. The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecast. 1998, 13, 263–276. [Google Scholar] [CrossRef]
- Bechini, R.; Chandrasekar, V. An enhanced optical flow technique for radar nowcasting of precipitation and winds. J. Atmos. Oceanic Technol. 2017, 34, 2637–2658. [Google Scholar] [CrossRef]
- Woo, W.C.; Wong, W.K. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Han, L.; Sun, J.; Zhang, W.; Xiu, Y.; Feng, H.; Lin, Y. A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos. 2017, 122, 4038–4051. [Google Scholar] [CrossRef]
- Leinonen, J.; Hamann, U.; Germann, U.; Mecikalski, J.R. Nowcasting thunderstorm hazards using machine learning: The impact of data sources on performance. Nat. Hazards Earth Syst. Sci. 2021, 22, 577–597. [Google Scholar] [CrossRef]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Shi, E.; Li, Q.; Gu, D.; Zhao, Z. A method of weather radar echo extrapolation based on convolutional neural networks. In Proceedings of the International Conference on Multimedia Modeling, Bangkok, Thailand, 5–7 February 2018. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the 29th Conference on Neural Information Processing Systems, NeurIPS, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. In Proceedings of the 31st Conference on Neural Information Processing Systems, NeurIPS, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Geng, Y.-A.; Li, Q.; Lin, T.; Jiang, L.; Xu, L.; Dong, Z.; Yao, W.; Lyu, W.; Zhang, Y. LightNet: A dual spatiotemporal encoder network model for lightning prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Geng, Y.-A.; Li, Q.; Lin, T.; Yao, W.; Xu, L.; Dong, Z.; Zheng, D.; Zhou, X.-Y.; Zheng, L.; Lyu, W.-T.; et al. A deep learning framework for lightning forecasting with multi-source spatiotemporal data. Q. J. R. Meteorol. Soc. 2021, 147, 4048–4062. [Google Scholar] [CrossRef]
- Chen, L.; Cao, Y.; Ma, L.; Zhang, J. A Deep Learning-Based Methodology for Precipitation Nowcasting With Radar. Earth Space Sci. 2020, 7, e2019EA000812. [Google Scholar] [CrossRef]
- Yasuno, T.; Ishii, A.; Amakata, M. Rain-Code Fusion: Code-to-Code ConvLSTM Forecasting Spatiotemporal Precipitation. In Proceedings of the International Conference on Pattern Recognition, Virtual Event, 10–15 January 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Yao, G.; Liu, Z.; Guo, X.; Wei, C.; Li, X.; Chen, Z. Prediction of Weather Radar Images via a Deep LSTM for Nowcasting. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Luo, C.; Li, X.; Wen, Y.; Ye, Y.; Zhang, X. A Novel LSTM Model with Interaction Dual Attention for Radar Echo Extrapolation. Remote Sens. 2021, 13, 164. [Google Scholar] [CrossRef]
- Ma, C.; Li, S.; Wang, A.; Yang, J.; Chen, G. Altimeter observation-based eddy nowcasting using an improved Conv-LSTM network. Remote Sens. 2019, 11, 783. [Google Scholar] [CrossRef]
- Zhou, K.; Zheng, Y.; Dong, W.; Wang, T. A deep learning network for cloud-to-ground lightning nowcasting with multisource data. J. Appl. Meteor. Climatol. 2020, 37, 927–942. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, S.; Tan, J. TSRC: A Deep Learning Model for Precipitation Short-Term Forecasting over China Using Radar Echo Data. Remote Sens. 2023, 15, 142. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast. arXiv 2022, arXiv:2211.02556. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. Med. Image Comput. Comput.-Assist. Interv. 2015, 9351, 234–241. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; p. 11211. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; p. 9901. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. ADAM: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Module | Component | In–Out Channel | In–Out Depth | Kernel Size | Stride | Padding |
---|---|---|---|---|---|---|
Encoder | DoubleConv_1 | (3, 64) | (6, 6) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) |
MaxPool3D_1 | (64, 64) | (6, 4) | (2, 2, 2) | (2, 2, 2) | (1, 0, 0) | |
DoubleConv_2 | (64, 128) | (4, 4) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
MaxPool3D_2 | (128, 128) | (4, 2) | (2, 2, 2) | (2, 2, 2) | (0, 0, 0) | |
DoubleConv_3 | (128, 256) | (2, 2) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
MaxPool3D_3 | (256, 256) | (2, 1) | (2, 2, 2) | (2, 2, 2) | (0, 0, 0) | |
DoubleConv_4 | (256, 512) | (1, 1) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
MaxPool3D_4 | (512, 512) | (1, 1) | (2, 2, 2) | (2, 2, 2) | (0, 0, 0) | |
DoubleConv_5 | (512, 512) | (1, 1) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
Decoder | Upsample_1 | (512, 512) | (1, 1) | (1, 2, 2) | — | — |
Concatenation_1 | (512, 1024) | (1, 1) | — | — | — | |
DoubleConv_6 | (1024, 256) | (1, 1) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
Upsample_2 | (256, 256) | (1, 2) | (2, 2, 2) | — | — | |
Concatenation_2 | (256, 512) | (2, 2) | — | — | — | |
DoubleConv_7 | (512, 128) | (2, 2) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
Upsample_3 | (128, 128) | (2, 4) | (2, 2, 2) | — | — | |
Concatenation_3 | (128, 256) | (4, 4) | — | — | — | |
DoubleConv_8 | (256, 64) | (4, 4) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
Upsample_4 | (64, 64) | (4, 6) | Output Size is (6,480,480) | |||
Concatenation_4 | (64, 128) | (6, 6) | — | — | — | |
DoubleConv_9 | (128, 64) | (6, 6) | (3, 3, 3) | (1, 1, 1) | (1, 1, 1) | |
Output | MaxPool3D_5 | (64, 64) | (6, 1) | (4, 1, 1) | (3, 1, 1) | (0, 0, 0) |
Conv_1 | (64, 3) | (1, 1) | (1, 1, 1) | (1, 1, 1) | (0, 0, 0) |
Method | Input Data | Class | POD | FAR | TS | ETS |
---|---|---|---|---|---|---|
DeepLabV3+ | Reflectivity only | CG | 0.056 | 0.954 | 0.026 | 0.024 |
Reflectivity and lightning | CG | 0.167 | 0.885 | 0.059 | 0.047 | |
Light3DUnet | Reflectivity only | CG | 0.115 | 0.932 | 0.045 | 0.043 |
IC | 0.089 | 0.926 | 0.042 | 0.039 | ||
CG | 0.168 | 0.862 | 0.081 | 0.079 | ||
Reflectivity and lightning | CG | 0.336 | 0.724 | 0.178 | 0.176 | |
IC | 0.262 | 0.745 | 0.148 | 0.147 | ||
CG | 0.459 | 0.726 | 0.207 | 0.206 |
Data | Classes | POD | FAR | TS | ETS |
---|---|---|---|---|---|
Reflectivity only | IC + CG | 0.235 | 0.807 | 0.119 | 0.116 |
Reflectivity and lightning | IC + CG | 0.673 | 0.448 | 0.435 | 0.433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Zhou, C. Cloud-to-Ground and Intra-Cloud Nowcasting Lightning Using a Semantic Segmentation Deep Learning Network. Remote Sens. 2023, 15, 4981. https://doi.org/10.3390/rs15204981
Fan L, Zhou C. Cloud-to-Ground and Intra-Cloud Nowcasting Lightning Using a Semantic Segmentation Deep Learning Network. Remote Sensing. 2023; 15(20):4981. https://doi.org/10.3390/rs15204981
Chicago/Turabian StyleFan, Ling, and Changhai Zhou. 2023. "Cloud-to-Ground and Intra-Cloud Nowcasting Lightning Using a Semantic Segmentation Deep Learning Network" Remote Sensing 15, no. 20: 4981. https://doi.org/10.3390/rs15204981
APA StyleFan, L., & Zhou, C. (2023). Cloud-to-Ground and Intra-Cloud Nowcasting Lightning Using a Semantic Segmentation Deep Learning Network. Remote Sensing, 15(20), 4981. https://doi.org/10.3390/rs15204981