Fine Classification Method for Massive Microseismic Signals Based on Short-Time Fourier Transform and Deep Learning
Abstract
:1. Introduction
2. Methods and Data Preparation
2.1. Short-Time Fourier Transform (STFT)
2.2. Analysis of Signal Time-Frequency Characteristics
2.3. Attention Mechanism
2.4. VGG13 Modified Network
2.5. Dataset
3. Results
3.1. Evaluation Indicators
3.2. Training Results
3.3. Model Comparison
4. Engineering Application and Discussion
4.1. Engineering Background
4.1.1. Engineering Geology Overview
4.1.2. Monitoring Sensor Arrays
4.2. Intelligent Microseismic Monitoring and Early Warning Based on the Cloud Platform
4.2.1. Microseismic Monitoring Process
4.2.2. Classification Test and Rock Burst Warning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, M. Analysis of Early Warning Parameters for Ground Pressure Disaster Based on Microseismic Monitoring. Min. Metal Eng. 2022, 42, 35–40. (In Chinese) [Google Scholar]
- Jin, D.W.; Duan, J.H.; Li, L.C.; Yan, B.; Mou, W.Q.; Lu, J.J.; Zhou, L.S. Microseimicity Based Research for Mining Induced Fracture Propagation and Water Pathway Identification Technology of Floor. J. Eng. Geol. 2021, 29, 962–971. (In Chinese) [Google Scholar]
- Li, N.; Wang, E.Y.; Ge, M.C. Microseismic Monitoring Technology and Its Applications at Coal Mines: Present Status and Future prospects. J. China Coal Soc. 2017, 42, 83–96. (In Chinese) [Google Scholar]
- Zhao, J.S.; Chen, B.R.; Jiang, Q.; Lu, J.F.; Hao, X.J.; Pei, S.F.; Wang, F. Microseismic Monitoring of Rock Mass Fracture Response to Blasting Excavation of Large Underground Caverns Under High Geostress. Rock Mech. Rock Eng. 2021. [Google Scholar] [CrossRef]
- Zhang, W.D.; Ma, T.H.; Tan, C.A.; Tan, L.X. Research on Characteristics of Rockburst and Rules of Microseismic Monitoring at Diversion Tunnels in Jinping II Hydropower Station. Chin. J. Rock Mech. Eng. 2014, 33, 339–348. (In Chinese) [Google Scholar]
- Zhou, X.; Li, B.; Yang, C.M.; Zhong, W.M.; Ding, Q.F.; Mao, H.Y. Analysis of Surrounding Rock in Multi-Discontinuous Hydraulic Tunnel Based on Microseismic Monitoring. App. Sci. 2021, 12, 149. [Google Scholar] [CrossRef]
- Li, T.B.; Ma, C.C.; Zhu, M.L.; Meng, L.B.; Chen, G.Q. Geomechanical Types and Mechanical Analyses of Rockbursts. Eng. Geol. 2017, 222, 72–83. [Google Scholar] [CrossRef]
- Helmstetter, A.; Garambois, S. Seismic Monitoring of Sechilienne Rockslide (French Alps): Analysis of Seismic Signals and Their Correlation with Rainfalls. J. Geo. Res. Earth Surf. 2010, 115, F03016. [Google Scholar] [CrossRef]
- Zhang, Z.; Arosio, D.; Hojat, A.; Zanzi, L. Tomographic Experiments for Defining the 3D Velocity Model of An Unstable Rock slope to Support Microseismic Event Interpretation. Geosciences 2020, 10, 327. [Google Scholar] [CrossRef]
- Ma, C.C.; Li, T.B.; Zhang, H.; Jiang, Y.P.; Song, T. A Method for Numerical Simulation Based on Microseismic Information and The Interpretation of Hard Rock Fracture. J. App. Geophys. 2019, 164, 214–224. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X.; Yu, Y. A Microseismic Method for Dynamic Warning of Rockburst Development Processes in Tunnels. Rock Mech. Rock Eng. 2015, 42, 2061–2076. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X.; Liu, G.F.; Zhang, W.; Hu, L. Characteristics of Microseismicity During Breakthrough in Deep Tunnels: Case Study of Jinping-II Hydropower Station in China. Int. J. Geom. 2020, 20. [Google Scholar] [CrossRef]
- Zhang, Z.; Arosio, D.; Hojat, A.; Zanzi, L. Reclassification of Microseismic Events Through Hypocenter Location: Case Study on an Unstable Rock Face in Northern Italy. Geosciences 2021, 11, 37. [Google Scholar] [CrossRef]
- Dong, L.J.; Sun, D.Y.; Li, X.B.; Ma, J.; Chen, G.H.; Zhang, C.X. A Statistical Method to Identify Blasts and Microseismic Events and Its Engineering Application. Chin. J. Rock Mech. Eng. 2016, 35, 1423–1433. (In Chinese) [Google Scholar]
- Vallejos, J.A.; MinKinon, S.D. Logistic Regression and Neural Network Classification of Seismic Records. Int. J. Rock Mech. Min. 2013, 62, 86–95. [Google Scholar] [CrossRef]
- Shang, X.Y.; Li, X.B.; Morales-Esteban, A.; Chen, G.H. Improving Microseismic Event and Quarry Blast Classification Using Artificial Neural Networks Based on Principal Component Analysis. Soil Dyn. Earthq. Eng. 2017, 99, 142–149. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, C.; He, Y.; Zhao, X.G.; Sun, Y.J.; Ma, Y.L. Explainable Time-Frequency Convolutional Neural Network for Microseismic Waveform Classification. Inf. Sci. 2021, 546, 883–896. [Google Scholar] [CrossRef]
- Yang, W.; Li, C.W.; Xu, R.; Li, X.C. Experimental Investigation on Time-Frequency Characteristics of Microseismic Signals in the Damage Evolution Process of Coal and Rock. Energies 2020, 13, 809. [Google Scholar] [CrossRef] [Green Version]
- Bruno, O.P.; Jorge, A.; Jose, P.F.; Hugo, F.T.; Alejandro, O.C. Near-Surface Shear-Wave Velocity Structure Using Time-Frequency Seismic Noise Cross-Correlation in Ciudad Universitaria, Puebla, Mexico. J. S. Am. Earth Sci. 2022, 118, 103957. [Google Scholar]
- Manish, K.; Satish, K.; Bhargab, D. Seismic Signal Analysis using Empirical Wavelet Transform for Moving Ground Target Detection and Classification. IEEE Sens. J. 2020, 20, 7886–7895. [Google Scholar]
- Lu, C.P.; Dou, L.M.; Wu, X.R.; Wang, H.M.; Qin, Y.H. Frequency Spectrum Analysis on Microseismic Monitoring and Signal Differentiation of Rock Material. Chin. J. Geotech. Eng. 2005, 27, 772–775. (In Chinese) [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.; Shih, H.H.; Zheng, Q.A.; Yen, N.C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. R. Soc. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Shang, X.Y.; Li, X.B.; Peng, K.; Dong, L.J.; Wang, Z.W. Feature Extraction and Classification of Mine Microseism and Blast Based on EMD_SVD. Chin. J. Geotech. Eng. 2016, 38, 1849–1858. (In Chinese) [Google Scholar]
- Zhu, Q.J.; Jiang, F.X.; Yi, Y.M.; Yu, Z.X.; Wen, J.L. Classification of Mine Microseismic Events Based on Wavelet-Fractal Method and Patter Recognition. Chin. J. Geotech. Eng. 2012, 34, 2036–2042. (In Chinese) [Google Scholar]
- Zhao, G.Y.; Deng, Q.L.; Ma, J. Recognition of Mine Microseismic Signals Based on FSWT Time-Frequency Analysis. Chin. J. Geotech. Eng. 2015, 37, 306–312. (In Chinese) [Google Scholar]
- Zhang, H.; Zeng, J.; Ma, C.C.; Li, T.B.; Deng, Y.L.; Song, T. Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering. Sensor 2021, 21, 6762. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.B.; Liu, R.; Liu, Y.H.; Zhang, Y.X.; Gu, T. Research on Classification and Identification of Mine Microseismic Signals Based on Deep Learning Method. J. Min. Sci. Technol. 2022, 7, 166–174. (In Chinese) [Google Scholar]
- Ma, C.C.; Zhang, H.; Lu, X.Q.; Ji, X.; Li, T.B.; Fang, Y.; Yan, W.J.; Ran, X.F. A Novel Microseismic Classification Model Based on Bimodal Neurons in An Artificial Neural Network. Tunn. Undergr. Space Technol. 2023, 131, 104791. [Google Scholar] [CrossRef]
- Griffin, D.W.; Lim, J.S. Signal Estimation from Modified Short-Time Fourier Transform. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 236–243. [Google Scholar] [CrossRef]
- Wongsaroj, W.; Hamdani, A.; Thong-Un, N.; Takahashi, H.; Kikura, H. Extended Short-Time Fourier Transform for Ultrasonic Velocity Profiler on Two-Phase Bubbly Flow Using a Single Resonant Frequency. Appl. Sci. 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ko, D.K.; Lim, S.C.; Kim, H.S. Structural Vibration-Based Classification and Prediction of Delamination in Smart Composite Laminates Using Deep Learning Neural Network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, Z.F.; Zheng, Z.; Zhang, Y.H. Sparse Bayesian Learning Beamforming Combined with Short-Time Fourier Transform for Fault Detection of Wind Turbine Blades. J. Acoust. Soc. Am. 2019, 145, 1802. [Google Scholar] [CrossRef]
- WOO, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Karen, S.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Ma, C.C.; Fan, J.Q.; Ji, X.; Shi, X.Y.; Zeng, J. Effect of the Initial Support of the Tunnel on the Characteristics of Rockburst: Case Study and Mechanism Analysis. Adv. Civ. Eng. 2022, 2022, 7235619. [Google Scholar] [CrossRef]
Layer (Type) | Output (Shape) | Param |
---|---|---|
Input | (None, 129, 236, 2) | 0 |
Conv1 | (None, 129, 236, 32) | 608 |
Conv2 | (None, 129, 236, 32) | 9248 |
Maxp1 | (None, 65, 118, 32) | 0 |
Conv3 | (None, 65, 118, 64) | 18,496 |
Conv4 | (None, 65, 118, 64) | 36,928 |
Maxp2 | (None, 33, 59, 64) | 0 |
Conv5 | (None, 33, 59, 128) | 73,856 |
Conv6 | (None, 33, 59, 128) | 147,584 |
Maxp3 | (None, 17, 30, 128) | 0 |
Conv7 | (None, 17, 30, 256) | 295,168 |
Conv8 | (None, 17, 30, 256) | 590,080 |
Maxp4 | (None, 9, 15, 256) | 0 |
Conv9 | (None, 9, 15, 512) | 1,180,160 |
Conv10 | (None, 9, 15, 512) | 2,359,808 |
Maxp5 | (None, 5, 8, 512) | 0 |
Conv11 | (None, 5, 8, 512) | 2,359,808 |
Conv12 | (None, 5, 8, 512) | 2,359,808 |
Maxp6 | (None, 3, 4, 512) | 0 |
Flatten | (None, 6144) | 0 |
FC | (None, 2) | 12,290 |
Name of Indicator | Definition Formula |
---|---|
Precision | |
Recall | |
Micro F1_Score | |
Macro F1_Score | |
TPR | |
FPR |
Model | Parameters (×106) | Val_Loss | Val_Acc |
---|---|---|---|
VGG13 | 9.97 | 0.034 | 0.991 |
VGG16 | 13.04 | 0.032 | 0.993 |
TFMC | 9.44 | 0.022 | 0.993 |
Prediction | MS | NS | |
---|---|---|---|
Classes | |||
MS | 1266 | 42 | |
NS | 32 | 1425 |
Model | Prediction | MS | Blast | Gaussian | Accuracy | |
---|---|---|---|---|---|---|
Classes | ||||||
TFMC | MS | 486 | 0 | 14 | 98.7% | |
Blast | 0 | 500 | 0 | |||
Gaussian | 5 | 0 | 495 | |||
TMC | MS | 473 | 0 | 27 | 96.5% | |
Blast | 4 | 496 | 0 | |||
Gaussian | 22 | 0 | 478 |
TFMC | |||||||
Classes | Precision | Recall | Micro F1_Score | Macro F1_Score | TP | FP | FN |
MS | 0.972 | 0.990 | 0.981 | 0.987 | 486 | 14 | 5 |
Blast | 1 | 1 | 1 | 500 | 0 | 0 | |
Gaussian | 0.990 | 0.972 | 0.981 | 495 | 5 | 14 | |
TMC | |||||||
Classes | Precision | Recall | Micro F1_Score | Macro F1_Score | TP | FP | FN |
MS | 0.946 | 0.948 | 0.981 | 0.975 | 473 | 27 | 26 |
Blast | 0.992 | 0.992 | 0.992 | 496 | 4 | 0 | |
Gaussian | 0.956 | 0.947 | 0.951 | 478 | 22 | 27 |
Unit | Value |
---|---|
Density | 2800–2900 kg/m3, average: 2850 kg/m3 |
Uniaxial compressive Strength | 46 MPa |
Poisson ratio | 0.15–0.35 |
elasticity modulus | 5 × 104–9.4 × 104 MPa |
Shear modulus | 2.17 × 104–3.48 × 104 MPa, average: 2.82 × 104 MPa |
S-wave velocity | 4000 sm/s |
Locations | Depth/m | Principal Stress | Value/MPa | Azimuth/° | Dip Angle/° |
---|---|---|---|---|---|
K78+923 | 1396.78 | σ1 | 36.61 | 199.76 | −7.21 |
σ2 | 20.64 | 63.84 | −41.39 | ||
σ3 | 18.49 | 101.76 | −47.70 |
Model | Prediction | MS | SN | |
---|---|---|---|---|
Class | ||||
TFMC | MS | 934 | 66 | |
SN | 102 | 898 | ||
TMC | MS | 958 | 42 | |
SN | 655 | 345 |
TFMC | |||||||
Classes | Precision | Recall | Micro F1_Score | Macro F1_Score | TP | FP | FN |
MS | 0.934 | 0.902 | 0.918 | 0.917 | 934 | 66 | 102 |
SN | 0.898 | 0.932 | 0.915 | 898 | 102 | 66 | |
TMC | |||||||
Classes | Precision | Recall | Micro F1_Score | Macro F1_Score | TP | FP | FN |
MS | 0.958 | 0.594 | 0.733 | 0.615 | 958 | 42 | 655 |
SN | 0.345 | 0.891 | 0.497 | 345 | 655 | 42 |
Model | Prediction | ME | NE | Acc | Marco-Acc | |
---|---|---|---|---|---|---|
Classes | ||||||
TMC | ME | 66 | 0 | 100% | 64.5% | |
NE | 145 | 198 | 47% | |||
TFMC | ME | 62 | 4 | 93.9% | 96.8% | |
NE | 9 | 334 | 97.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Ran, X.; Xu, W.; Yan, W.; Li, T.; Dai, K.; Wan, J.; Lin, Y.; Tong, K. Fine Classification Method for Massive Microseismic Signals Based on Short-Time Fourier Transform and Deep Learning. Remote Sens. 2023, 15, 502. https://doi.org/10.3390/rs15020502
Ma C, Ran X, Xu W, Yan W, Li T, Dai K, Wan J, Lin Y, Tong K. Fine Classification Method for Massive Microseismic Signals Based on Short-Time Fourier Transform and Deep Learning. Remote Sensing. 2023; 15(2):502. https://doi.org/10.3390/rs15020502
Chicago/Turabian StyleMa, Chunchi, Xuefeng Ran, Weihao Xu, Wenjin Yan, Tianbin Li, Kunkun Dai, Jiangjun Wan, Yu Lin, and Ke Tong. 2023. "Fine Classification Method for Massive Microseismic Signals Based on Short-Time Fourier Transform and Deep Learning" Remote Sensing 15, no. 2: 502. https://doi.org/10.3390/rs15020502
APA StyleMa, C., Ran, X., Xu, W., Yan, W., Li, T., Dai, K., Wan, J., Lin, Y., & Tong, K. (2023). Fine Classification Method for Massive Microseismic Signals Based on Short-Time Fourier Transform and Deep Learning. Remote Sensing, 15(2), 502. https://doi.org/10.3390/rs15020502