Temporal Evolution and Regional Properties of Aerosol over the South China Sea
Abstract
:1. Introduction
2. Data Sources and Research Sites
2.1. AERONET Measurements
2.2. Sites Selection
2.3. EAC4 and ERA5
2.4. Air Mass Trajectories
3. Results and Analysis
3.1. Time Evolution of Aerosol Properties over Dongsha Island and Taiping Island
3.2. Back Trajectories and Aerosol Optical Properties over Dongsha Island and Taiping Island
3.3. Seasonal Properties of Aerosol over Dongsha Island and Taiping Island
3.4. Regional Properties of Aerosol over the South China Sea
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aerosol Optical Depth. Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 27 May 2022).
- Atwood, S.A.; Reid, J.S.; Kreidenweis, S.M.; Cliff, S.S.; Zhao, Y.; Lin, N.-H.; Tsay, S.-C.; Chu, Y.-C.; Westphal, D.L. Size resolved measurements of springtime aerosol particles over the northern South China Sea. Atmos. Environ. 2013, 78, 134–143. [Google Scholar] [CrossRef]
- Benedetti, A.; Morcrette, J.-J.; Boucher, O.; Dethof, A.; Engelen, R.; Fisher, M.; Flentje, H.; Huneeus, N.; Jones, L.; Kaiser, J.; et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res. 2009, 114, D13205. [Google Scholar] [CrossRef] [Green Version]
- Chuang, M.-T.; Chang, S.-C.; Lin, N.-H.; Wang, J.-L.; Sheu, G.-R.; Chang, Y.-J.; Lee, C.-T. Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment. Atmos. Environ. 2013, 78, 82–92. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- EAC4. Available online: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form (accessed on 28 May 2022).
- ERA5. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 1 May 2022).
- Formenti, P.; Andreae, M.; Andreae, T.W.; Galani, E.; Vasaras, A.; Zerefos, C.; Amiridis, V.; Orlovsky, L.; Karnieli, A.; Wendisch, M.; et al. Aerosol optical properties and large-scale transport of air masses: Observations at a coastal and a semiarid site in the eastern Mediterranean during summer 1998. J. Geophys. Res. Atmos. 2001, 106, 9807–9826. [Google Scholar] [CrossRef]
- Heintzenberg, J.; Covert, D.C.; Van Dingenen, R. Size distribution and chemical composition of marine aerosols: A compilation and review. Tellus B Chem. Phys. Meteorol. 2016, 52, 1104–1122. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Huang, S.-J.; Lin, C.-C. Distribution of Atmospheric Aerosol over the South China Sea. Adv. Meteorol. 2015, 2015, 692762. [Google Scholar] [CrossRef] [Green Version]
- Hyplist. Available online: https://www.arl.noaa.gov/hysplit/ (accessed on 28 May 2022).
- Itahashi, S.; Sakurai, T.; Shimadera, H.; Araki, S.; Hayami, H. Long-term trends of satellite-based fine-mode aerosol optical depth over the Seto Inland Sea, Japan, over two decades (2001–2020). Environ. Res. Lett. 2021, 16, 064062. [Google Scholar] [CrossRef]
- Kim, T.-W.; Lee, K.; Duce, R.; Liss, P. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea. Geophys. Res. Lett. 2014, 41, 3156–3162. [Google Scholar] [CrossRef]
- Kubilay, N.; Koçak, M.; Çokacar, T.; Oguz, T.; Kouvarakis, G.; Mihalopoulos, N. Influence of Black Sea and local biogenic activity on the seasonal variation of aerosol sulfur species in the eastern Mediterranean atmosphere. Glob. Biogeochem. Cycles 2002, 16, 27-1–27-15. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.-K.; Chao, S.-Y.; Shaw, P.-T.; Gong, G.-C.; Chen, C.-C.; Tang, T. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: Observations and a numerical study. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 5. [Google Scholar] [CrossRef]
- Lyamani, H.; Valenzuela, A.; Perez-Ramirez, D.; Toledano, C.; Granados-Muñoz, M.J.; Olmo, F.J.; Alados-Arboledas, L. Aerosol properties over the western Mediterranean basin: Temporal and spatial variability. Atmos. Chem. Phys. 2015, 15, 2473–2486. [Google Scholar] [CrossRef] [Green Version]
- Mangold, A.; De Backer, H.; De Paepe, B.; Dewitte, S.; Chiapello, I.; Derimian, Y.; Kacenelenbogen, M.; Léon, J.-F.; Huneeus, N.; Schulz, M.; et al. Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by means of case studies. J. Geophys. Res. 2011, 116, D03302. [Google Scholar] [CrossRef] [Green Version]
- Morcrette, J.-J.; Beljaars, A.; Benedetti, A.; Jones, L.; Boucher, O. Sea-salt and dust aerosols in the ECMWF IFS model. Geophys. Res. Lett. 2008, 35, L24813. [Google Scholar] [CrossRef]
- O’Neill, N.T. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 2003, 108, 4559. [Google Scholar] [CrossRef]
- Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; Di Girolamo, L.; Giglio, L.; et al. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res. 2013, 122, 403–468. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Atwood, S.A.; Boyd, T.J.; Ghate, V.P.; Lynch, P.; Posselt, D.J.; Simpas, J.B.; et al. Aerosol meteorology and Philippine receptor observations of Maritime Continent aerosol emissions for the 2012 7SEAS southwest monsoon intensive study. Atmos. Chem. Phys. 2016, 16, 22. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.N.; Kaufman, Y.J.; Dubovik, O.; Eck, T.F.; Slutsker, I.; Pietras, C.; Halthore, R.N. Optical Properties of Atmospheric Aerosol in Maritime Environments. J. Atmos. Sci. 2002, 59, 501. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Dubovik, O.; Frouin, R.; Eck, T.F.; Slutsker, I. Maritime component in aerosol optical model derived from Aerosol Robotic Network data. J. Geophys. Res. 2003, 108, 4033. [Google Scholar] [CrossRef]
- Tseng, C.-M. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys. Res. Lett. 2005, 32, L08608. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-H.; Tsay, S.-C.; Lin, N.-H.; Chang, S.-C.; Li, C.; Welton, E.J.; Holben, B.N.; Hsu, N.C.; Lau, W.K.; Lolli, S.; et al. Origin, transport, and vertical distribution of atmospheric pollutants over the northern South China Sea during the 7-SEAS/Dongsha Experiment. Atmos. Environ. 2013, 78, 124–133. [Google Scholar] [CrossRef]
- Xiao, H.-W.; Xiao, H.-Y.; Luo, L.; Shen, C.-Y.; Long, A.-M.; Chen, L.; Long, Z.-H.; Li, D.-H. Atmospheric aerosol compositions over the South China Sea: Temporal variability and source apportionment. Atmos. Chem. Phys. 2017, 17, 3199–3214. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.-W.; Xie, L.-H.; Long, A.-H.; Ye, F.; Pan, Y.-P.; Li, D.-N.; Long, Z.-H.; Chen, L.; Xiao, H.-Y.; Liu, C.-Q. Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea. Atmos. Environ. 2015, 109, 70–78. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, H.; Li, Z.; Xie, Y.; Li, D. Maritime Aerosol Optical and Microphysical Properties in the South China Sea Under Multi-source Influence. Sci. Rep. 2019, 9, 17796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhuang, G.; Guo, J.; Yin, K.; Zhang, P. Characterization of aerosol over the Northern South China Sea during two cruises in 2003. Atmos. Environ. 2007, 41, 7821–7836. [Google Scholar] [CrossRef]
- Zheng, X.-S.; Zhang, Y.-N.; Pan, Y. Spatial and Temporal Variations of Aerosol Optical Depth and Influence Factors over the East China Sea. Int. J. Environ. Monit. Anal. 2016, 4, 94. [Google Scholar] [CrossRef]
N Total | Mean | SD | Min | Med | Max | FOC | |
---|---|---|---|---|---|---|---|
τ (1020 nm) | 456 | 0.11 | 0.08 | 0.02 | 0.1 | 0.48 | 69% |
τ (500 nm) | 456 | 0.26 | 0.21 | 0.04 | 0.19 | 1.3 | 84% |
τ (380 nm) | 456 | 0.34 | 0.28 | 0.05 | 0.25 | 1.69 | 82% |
α | 456 | 1.1 | 0.38 | 0.15 | 1.13 | 1.952 | 34% |
τF | 453 | 0.18 | 0.21 | 0.01 | 0.111 | 1.25 | 111% |
τC | 453 | 0.06 | 0.04 | 0.01 | 0.06 | 0.34 | 64% |
FMF | 453 | 0.65 | 0.19 | 0.18 | 0.66 | 0.97 | 30% |
N Total | Mean | SD | Min | Med | Max | FOC | |
---|---|---|---|---|---|---|---|
τ (1020 nm) | 551 | 0.09 | 0.06 | 0.01 | 0.08 | 0.7 | 65% |
τ (500 nm) | 551 | 0.17 | 0.13 | 0.04 | 0.13 | 1.85 | 79% |
τ (380 nm) | 551 | 0.21 | 0.16 | 0.04 | 0.17 | 2.14 | 78% |
α | 551 | 0.96 | 0.36 | 0.11 | 0.98 | 2.03 | 37% |
τF | 450 | 0.09 | 0.13 | 0.01 | 0.06 | 1.8 | 146% |
τC | 450 | 0.06 | 0.03 | 0.01 | 0.06 | 0.24 | 54% |
FMF | 450 | 0.53 | 0.17 | 0.16 | 0.53 | 0.982 | 32% |
DS | HK | DS | NS | DS | TP | TP | NT | TP | SP | |
---|---|---|---|---|---|---|---|---|---|---|
τ (1020 nm) | 0.09 | 0.17 | 0.11 | 0.13 | 0.13 | 0.08 | 0.08 | 0.12 | 0.09 | 0.14 |
τ (500 nm) | 0.21 | 0.44 | 0.25 | 0.35 | 0.31 | 0.16 | 0.14 | 0.27 | 0.17 | 0.37 |
τ (380 nm) | 0.29 | 0.56 | 0.33 | 0.46 | 0.41 | 0.19 | 0.18 | 0.38 | 0.21 | 0.51 |
α | 1.17 | 1.27 | 1.02 | 1.25 | 1.14 | 0.99 | 0.90 | 1.20 | 0.94 | 1.31 |
τF | 0.15 | 0.37 | 0.18 | 0.31 | 0.24 | 0.10 | 0.08 | 0.21 | 0.10 | 0.30 |
τC | 0.06 | 0.06 | 0.06 | 0.04 | 0.06 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 |
FMF | 0.66 | 0.77 | 0.63 | 0.8 | 0.68 | 0.57 | 0.52 | 0.69 | 0.55 | 0.74 |
Coincident day | 212 | 212 | 197 | 197 | 210 | 210 | 154 | 154 | 310 | 310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhu, W.; Liu, Q.; Qian, X.; Chen, X.; Zheng, J.; Yang, T.; Xu, Q.; Yang, T. Temporal Evolution and Regional Properties of Aerosol over the South China Sea. Remote Sens. 2023, 15, 501. https://doi.org/10.3390/rs15020501
Chen J, Zhu W, Liu Q, Qian X, Chen X, Zheng J, Yang T, Xu Q, Yang T. Temporal Evolution and Regional Properties of Aerosol over the South China Sea. Remote Sensing. 2023; 15(2):501. https://doi.org/10.3390/rs15020501
Chicago/Turabian StyleChen, Jie, Wenyue Zhu, Qiang Liu, Xianmei Qian, Xiaowei Chen, Jianjie Zheng, Tao Yang, Qiuyi Xu, and Tengfei Yang. 2023. "Temporal Evolution and Regional Properties of Aerosol over the South China Sea" Remote Sensing 15, no. 2: 501. https://doi.org/10.3390/rs15020501
APA StyleChen, J., Zhu, W., Liu, Q., Qian, X., Chen, X., Zheng, J., Yang, T., Xu, Q., & Yang, T. (2023). Temporal Evolution and Regional Properties of Aerosol over the South China Sea. Remote Sensing, 15(2), 501. https://doi.org/10.3390/rs15020501