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Abstract: Aerosol robotic network (AERONET) data from Dongsha Island (20.699N, 116.729E) and
Taiping Island (35.90N, 3.03W) over the South China Sea (SCS) from January 2018 to December 2020
were used to analyze and discuss the temporal evolution properties of aerosols in the South China
Sea. Surrounding AERONET stations (Hong Kong, NSPO, Nha Trang and Singapore) were also
used to analyze regional characteristics. High aerosol loads over Dongsha were strongly associated
with the anthropogenic fine particle transport from the southeastern coast of China and occasional
advection of desert dust from Mongolian areas. The high fine aerosol loading in Taiping originates
from the region between Singapore and Indonesia. Compared with other marine islands in the
world, SCS was not a pure marine aerosol environment and was affected by terrestrial aerosols.
In the Taiping area, aerosol optical depth τ (500 nm) was 0.17 ± 0.13 and the average Ångström
exponent α (440–870 nm) was 0.96 ± 0.36. However, that of Dongsha shows the larger values of τ
(0.26 ± 0.21) and α (1.1 ± 0.38), indicating that there are large fluctuations in aerosol concentration
and size. Aerosol loads in different regions of the SCS due to uneven socioeconomic and complex
meteorological systems, such as those of the coastal cities of China, Singapore, and the region between
Singapore and Indonesia, contribute to the high optical depth. The special meteorological regime and
aerosol source mechanism in the SCS leads to the obvious seasonal cycle of aerosol optical depth and
Ångström index. Moreover, the loading variations of aerosols on Dongsha Island and Taiping Island
were highly consistent with those of coastal cities around them, suggesting the significant effect of
the aerosol in the SCS by the surrounding coastal cities, although the aerosol optical depth in these
two places was much lower than that in the surrounding cities.

Keywords: South China Sea; AERONET; aerosol optical depth

1. Introduction

The South China Sea (SCS) connects the Pacific Ocean with the Indian Sea and is one
of the largest marginal seas in Southeast Asia [1–3]. In such a low latitude sea, it is often
affected by aerosol eruptions from Asia, resulting in local climate change anomalies [3–5].
The complex physical, biological, geographical, monsoon climate and complicated economy
are of great importance in the combined effect of aerosol properties [6]. In particular, the
SCS receives substantial amounts of different types of aerosols from surrounding regions
due to various economic activity [5,7].

Many efforts have been made by many groups to characterize this area by using
two main methods: sampling and remote sensing. The sampling method of atmospheric
aerosols is one of the main methods used to research the pollutant sources and related
chemical properties in this area. Xiao et al. [8] found that fossil fuel combustion on Yongxing
Island (especially coal in the coastal areas of China) was an important source of NO3

− (56%)
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and SO4
2− (22%), and biomass burning accounted for 41% of K+ in Asia. On Dongsha

Island, carbonaceous content and water-soluble ions are the dominant components of total
suspended particulates (TSP), which are affected by mobile vehicles and coal and biomass
burning [9]. Zhang et al. [10] reported that methanesulfonic acid measured at PM2.5
aerosol samples over the northern SCS was comparable to those over other coastal regions.
The sampling study mainly focused on the short-term analysis of pollutant composition
in this region and its nearby islands, but did not carry out the long-term exploration of
aerosol in the South China Sea. In addition, remote sensing provides an important tool
for understanding the function of aerosols in Earth’s radiation budget. From satellite
and ground remote sensing measurements, aerosol column characteristics can be obtained.
Smirnov et al. [11,12] conducted a number of studies on aerosol optical properties in various
maritime and coastal areas, except the SCS, by using AERONET. Studies gave a generally
accepted criteria for the determination of “pure marine aerosol”: AOD (500 nm) smaller
than 0.15 and Ångström exponent α (440–870 nm) less than 1. Itahashi et al. [13] and Zheng
et al. [14] used MODIS to analyse aerosol optical depths in the Seto Inland Sea and East
Sea near the SCS. Reid et al. [15] analyzed 7 Southeast Asian Studies (7-SEAS) and found
that the strong monsoon effected the transport and removal of aerosol particles by the
AERONET and Lidar data in SCS. Many scholars have studied local aerosol characteristics
and analysed microphysical properties, optical properties and aerosol distributions based
on ground-based measurements surrounding the SCS [16,17].

Although the abovementioned studies focused on the analysis of local pollution and
aerosol properties, they only targeted short-term experimental measurements or focused
mainly on high aerosol load cases. Therefore, it is necessary to study the aerosol properties
over the SCS to evaluate the aerosol regimes, which is significant with regard to researching
temporal evolution and regional properties and makes up for the absence of aerosol models
over this explored region. In this study, the aerosol loading, source and spatio-temporal
variation of Dongsha Island and Taiping Island in the South China Sea from 1 January 2018
to 31 December 2020 were presented by analyzing AERONET data. The optical properties
of aerosol over the SCS are analysed and discussed by considering the complexity of aerosol
origin and propagation, meteorology and geography, which is of great significance for the
study of the regional climate and atmospheric radiation transfer model.

2. Data Sources and Research Sites
2.1. AERONET Measurements

As a standard automatic solar photometer, a CE-318 was used to measure the char-
acteristics of columnar aerosols in the AERONET network [18]. The full viewing angle of
the instrument was 1.2◦, and direct sunlight measurement was conducted at 340, 380, 440,
500, 670, 870, 940 and 1020 nm (nominal wavelength). Moreover, the τ at each wavelength
was retrieved from the direct sunlight measurements, except τ (940 nm), since it was used
to calculate water vapour absorption. A further description about the photometer can be
found in Holben et al. [18]. The AERONET collaboration provides spectral aerosol optical
depth (AOD), retrieval products, and global distribution observations of precipitable water
under different aerosol states. In order to understand the AOD corresponding to short
wavelength and long wavelength, the aerosol optical properties were studied based on the
wavelengths of 380, 500 and 1020 nm. In addition, the Ångström exponent α (440–870 nm)
can effectively show the variation of particle size [19]. Ångström exponent α was obtained
from 440 nm to 870 nm by exponential fitting of the aerosol optical depth at different
wavelengths. Fine aerosol optical depth at 500 nm (τF (500 nm)), coarse aerosol optical
depth at 500 nm (τC (500 nm)), and fraction of optical depth of fine mode particles (FMF)
were determined by de-convolution algorithm [20]. Currently, AERONET contains three
levels of data, among which level 1 data was unfiltered, level 1.5 data was quality controlled
and filtered, and the level 2 data had quality assurance [21].
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2.2. Sites Selection

The location of each AERONET site is shown in Figure 1. This study focused on the
AERONET stations at Dongsha Island (20.699N, 116.729E) and Taiping Island (35.90N,
3.03W) over the SCS. Dongsha Island lies in the north of the SCS and is surrounded by
the Philippines, southern China and the Indochinese Peninsula in the distance (Figure 1).
Taiping Island is located in the northwest of the Nansha Islands, approximately 740 km
away from the Xisha Islands, and only 1000 km away from Singapore at the eastern
mouth of the Strait of Malacca. It is valuable in the aspects of channel safety, shipwreck
notification, meteorological monitoring, international aviation information, etc. NSPO
(24.784N, 121.001E) of AERONET station, located approximately 628 km northeast of
Dongsha Island, is the abbreviation of the Taiwan Space Center. It was used to evaluate the
impact of urban sources of aerosols on Dongsha Island. The Hongkong station (22.483N,
114.17E) and Nha Trang station (12.205N, 109.206E) are located 340 km and 620 km away
from Dongsha Island and Taiping Island, respectively, to assess the spatial distribution
of aerosols. The Singapore station (1.298N, 103.780E) is located 1000 km southwest of
Taiping Island to assess the source of aerosol long-distance transport. Since the data from
AERONET aerosol sites were not continuous and synchronous in time, in order to obtain
the recent aerosol optical depth, seasonal and spatial distribution characteristics in the
South China Sea, our study chose 2018 to 2020 as the research period.
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Figure 1. Locations of the observation sites in this study. Dongsha Island and Taiping Island sites
are shown as red stars, and other sites are shown as blue squares. All stations are affiliated with
AERONET.

2.3. EAC4 and ERA5

EAC4 (ECMWF Atmospheric Composition Reanalysis 4) is the fourth generation
European Centre for Medium-Range Weather Forecasts (ECWMF) global atmospheric
composition reanalysis. The reanalysis uses atmospheric models based on physical and
chemical laws to combine the model data with observation data from all over the world to
form a global complete and consistent dataset. This principle, known as data assimilation,
is based on the method used by the numerical weather prediction center and the air quality
prediction center. MODIS observations of AOD (550 nm) over ocean and land (except
bright surfaces) was also assimilated in EAC. Tropospheric aerosols were classified into
five types: sea salt, organic matter, desert dust, sulfate aerosols and black carbon. All
aerosol species are regarded as tracers, and are incorporated into the vertical diffusion and
convection scheme of the integrated forecasting system (IFS) [22]. Detailed methods for
EAC4 to obtain various aerosol optical depths can be found in many studies [23,24]. The
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AOD and the mass concentration in Dongsha and Taiping were obtained through EAC4 in
this study [25]. In addition, the high consistency (R2 = 0.92) of AOD obtained by EAC and
AERONET indicates that the data of EAC4 can be used to effectively verify the analysis
results (Figure 2).
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ERA5 is the ECMWF’s fifth generation reanalysis of global climate and weather over
the past 40 to 70 years. Hourly estimates of large amounts of atmosphere, ocean waves and
land surfaces was provided by ERA5 [26]. In this study, the wind speed, wind direction
and wave height of 10 metres were obtained to access meteorological characteristics of the
South China Sea.

2.4. Air Mass Trajectories

HYSPLIT is a complex and widely used system that uses the Lagrangian approach and
Eulerian methodology for the calculation of air encapsulation paths, complex transport,
pollutant dispersion, chemical transformation, and particle deposition simulations [27]. By
calculating five-day backwards trajectories ending at 00:00 UTC at Dongsha Island and
Taiping Island for 500 m above ground level using the HYSPLIT model every day for three
years, the source and transport of air mass to our target AERONET sites were characterized.
We chose five days as the compute cycles for this backwards trajectory analysis to ensure
trajectory integrity and reduce computational burden. In addition, the analysis height of
500 metres can effectively cover multiple air mass sources and transport trajectories at other
altitudes that are similar to this height.

3. Results and Analysis
3.1. Time Evolution of Aerosol Properties over Dongsha Island and Taiping Island

Figure 3(a1,b1) shows the time evolution of daily mean values of τ (380, 500 and
1020 nm) and α (440–870 nm) measured at Dongsha Island in the SCS from 1 January 2018
to 31 December 2020. Much of the missing data in the τ (λ) and α (440–870 nm) series is due
to invalid data. All of the daily average values of Dongsha Island are presented in Table 1.
A distinct feature is the large variability of τ (λ) (τ (500 nm) that ranged from 0.04 (Min) to
1.3 (Max), which is closely linked to the diversity of air mass sources in the study area, as
mentioned below. In order to evaluate the magnitude of variation in the various data sets,
the coefficient of fluctuation (FOC) was expressed by dividing the standard deviation of
the data set by the mean. As shown in Table 1, τ (λ) at 1020 nm showed smaller FOC than
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that at 380 nm. It is well known that τ (λ) is more susceptible to fine particles (radius below
0.5 µm) at short wavelengths, whereas it is more sensitive to coarse particles (radius above
0.5 µm) at long wavelengths [28]. In accordance with larger FOC of τF (500 nm) compared
to τC (500 nm) (Table 1), the higher variability of τ (λ) for shorter wavelengths indicates
strong variability in the fine particle load over Dongsha Island. In this region, the large τ (λ)
fluctuations corresponding to long wavelengths may be caused by the intrusion of marine
aerosols and dust, as described below. In addition, coarse particles in the atmosphere have
a shorter lifetime than fine particles, which may also be a reason for the large coarse particle
fluctuations τC (λ). The α (440–870 nm) also showed great variability, ranging from 0.15 to
1.95 with an average of 1.1 ± 0.38, indicating that the aerosol types (coarse particles, fine
particles and different mixtures of coarse particles and fine particles) were different under
different atmospheric conditions. Notably, α (400–870 nm) was greater than 1 in 66% of the
analyzed days, indicating that the aerosol population of Dongsha Island was dominated by
fine particles in most of the analyzed days. This conclusion was further supported by the
analysis of fine mode fraction (FMF), which ranged from 0.18 to 0.97 (mean 0.65 ± 0.19),
with 78% of the days analyzed having a daily mean greater than 0.5.
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Figure 3. (a) Daily average aerosol optical depth at 380, 500 and 1020 nm and (b) Ångström index
calculated from 440 to 870 nm at Dongsha Island (a1,b1) and Taiping Island (a2,b2) in the South China
Sea from 1 January 2018 to 31 December 2020. The error bars are the standard deviations.

Table 1. Multi-wavelength (1020, 500 and 380 nm) aerosol optical depth τ, Ångström exponent (α
(440–870)), fine aerosol optical depths at 500 nm (τF (500 nm), coarse aerosol optical depths at τC

(500 nm)) and fraction of optical depth of fine mode particles (FMF) in Dongsha from 1 January
2018 to 31 December 2020. All data were processed using daily averages. The total number of
samples (N total), average coefficient (Mean), standard deviation (SD), Minimum (Min), Median
(Med), Maximum (Max) and the coefficient of fluctuation (FOC) are also counted to assess variations
in the data.

N Total Mean SD Min Med Max FOC

τ (1020 nm) 456 0.11 0.08 0.02 0.1 0.48 69%
τ (500 nm) 456 0.26 0.21 0.04 0.19 1.3 84%
τ (380 nm) 456 0.34 0.28 0.05 0.25 1.69 82%

α 456 1.1 0.38 0.15 1.13 1.952 34%
τF 453 0.18 0.21 0.01 0.111 1.25 111%
τC 453 0.06 0.04 0.01 0.06 0.34 64%

FMF 453 0.65 0.19 0.18 0.66 0.97 30%
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Eight islands around the world are shown in Figure 4 to compare aerosol loads. These
islands or AERONET stations cover the Pacific (American_Samoa, 14.247S, 170.564W; Oki-
nawa_Hedo, 26.867N, 128.249E), Indian (Amsterdam_Island, 37.800S, 77.572E), Atlantic
(ARM_Graciosa, 39.091N, 28.029W; Ascension_Island, 7.976S, 14.415W), Mediterranean
(Lampedusa, 35.517N, 12.632E) and SCS (Dongsha and Taiping Islands). The mean τ

(500 nm) values over the South China Sea are significantly higher than those over the
open oceanic areas (American Samoa, Amsterdam Island, and ARM_Graciosa) without
the influence of long-distance transport. Additionally, the α (440–870 nm) and FMF values
obtained in this study were smaller than those of open oceanic areas for maritime aerosols.
Later in the article, we compare the Dongsha observations with those of three nearby
AERONET sites during the same period. Pure maritime situations can be generally found
when τ (500 nm) < 0.15 and α (440–870 nm) < 1 according to Smirnov et al. [12]. Based on
this evaluation criterion, 16 percent of the analyzed days on Dongsha Island were pure sea
conditions, the least of all the islands. Clean maritime conditions observed over Taiping
Island were more frequent than those observed over Dongsha Island and were still far
less frequent than in open oceanic areas. In addition, Okanaw_Hebe, Lampedusa and
Ascension_Island show similar performance in marine conditions. Marine areas that are
mostly surrounded by the Baltic, the Mediterranean and Sea of Japan were excluded from
the pure maritime research [29]. The SCS is a marginal sea in southern China surrounded
by coastal cities and regions in southeast China, the Philippines, the Greater Sunda Islands
and the Indochina Peninsula. Dongsha Island and Taiping Island are not directly affected
by human activities, but air masses reaching the two islands may be influenced by anthro-
pogenic aerosols during their passage over the SCS and continents. Figure 3 (a2,b2) shows
the aerosol properties in Taiping. The mean τ (500 nm) value of 0.17 and α (440–870 nm)
value of 0.96 over Taiping Island were significantly lower than the mean τ (500 nm) value of
0.26 and α (440–870 nm) value of 1.2 over Dongsha Island. Additionally, the average FMF
value of Taiping Island was lower than that of Dongsha Island (Table 2). The difference
in the presence of aerosols at these two sites can be explained by their different locations.
Taiping is farther away from land than Dongsha, and the surrounding air mass will carry
more sea salt aerosol particles, increase the proportion of coarse particles, and reduce the
optical depth.
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Table 2. Multi-wavelength (1020, 500 and 380 nm) aerosol optical depth τ, Ångström exponent
(α (440–870)), fine aerosol optical depths at 500 nm (τF (500 nm), coarse aerosol optical depths at
τC (500 nm)) and fraction of optical depth of fine mode particles (FMF) in Taiping from 1 January
2018 to 31 December 2020; All data were processed using daily averages. The total number of
samples (N total), average coefficient (Mean), standard deviation (SD), Minimum (Min), Median
(Med), Maximum (Max) and the coefficient of fluctuation (FOC) are also counted to assess variations
in the data.

N Total Mean SD Min Med Max FOC

τ (1020 nm) 551 0.09 0.06 0.01 0.08 0.7 65%
τ (500 nm) 551 0.17 0.13 0.04 0.13 1.85 79%
τ (380 nm) 551 0.21 0.16 0.04 0.17 2.14 78%

α 551 0.96 0.36 0.11 0.98 2.03 37%
τF 450 0.09 0.13 0.01 0.06 1.8 146%
τC 450 0.06 0.03 0.01 0.06 0.24 54%

FMF 450 0.53 0.17 0.16 0.53 0.982 32%

As shown in Figure 3(a1,b1), Dongsha Island is strongly affected by aerosols for several
days each year, with τ (500 nm) values exceeding 0.35. High aerosol loads (τ (500 nm) >
0.35) [28] over Dongsha Island were observed for 90 out of 449 days of analysis. These
events were observed on 66 analysis days from March to April. In these cases, the 60-day α

(440–870 nm) value was higher than 1.1, and the FMF value was higher than 0.7, indicating
the dominant role of fine particles. In the remaining high aerosol loading events, high
aerosol loading was associated with relatively low α (440–870 nm) values, reaching the
lowest α (440–870 nm) values (about 0.83). During these days, the FMF values were also
low and reached the lowest mean daily value of 0.52. This behavior indicates that coarse
particles mainly transported from other regions, except for sea salt aerosol, as there is no
local coarse particle activity in Dongsha. According to the analyses of back trajectories
during high aerosol loading days (Figure 5), all of these cases were linked to anthropogenic
and dust intrusion from the southeastern coast of China and Mongolia. The important
thing to note about these events is that τF (500 nm) was also relatively high and ranged
from 0.17 to 1.25 with a mean value of 0.56 ± 0.26. These results highlight the significant
contribution of fine model particles, with FMF ranging from 52% to 97% during these high
aerosol loading events. A backward trajectory analysis of high aerosol loads on these days
shows that the air mass that originated over the Taiwan Strait (57%) and Mongolia (17.12%)
in the study area was at a lower altitude (500 m). However, compared with Dongsha Island,
high aerosol loads (τ (500 nm) > 0.35) over Taiping Island can still be observed on 19 of
the 450 analysed days, and occurred from August to September, especially in 2018 and
2019. From 10 August to 30 September, the back trajectories in Taiping Island were almost
related to high aerosol loads from the region between Singapore and Indonesia. On these
days, high aerosol loads were associated with relatively high α (440–870 nm) values, which
peaked at about (2.14).

The values of τF (500 nm) were also high (>0.19), and the highest value was 1.8. Since
there is no significant anthropogenic activity in Taiping, it is likely that the fine particulate
matter in these cases originated mainly from mainland industrial/urban areas. Similarly,
the α (440–870 nm) value of Taiping Island was less than 0.9 on two days of high aerosol
loading days. However, α (440–870 nm) values were relatively low (<0.88) with high τF

(500 nm) values (approximately 0.22). These behaviors suggest that coarse particles were
transported from other locations, as there was no local coarse particle activity in Taiping
in addition to sea salt aerosols. In this event, the high τ values observed were associated
with a sustained monsoon climate centered in the SCS, which favours the transport of
anthropogenic particles emitted from Southeast Asia to the SCS. According to the EAC,
the aerosol optical depths of black carbon aerosol (BC), dust aerosol (DU), organic matter
aerosol (OM), sulfate aerosol (SU) and sea salt aerosol (SS) in Dongsha and Taiping are
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shown in Figure 6. It reveals that high aerosol loading in Dongsha and Taiping Island was
caused by the sharp increase in black carbon aerosols, dust aerosols and organic aerosols in
addition to sea salt aerosols. Figure 7 shows the distribution of BC in Dongsha and OM in
Taiping and its surrounding areas before and after the high aerosol loading in 2019. BC
and OM are typical urban aerosols. The appearance of these two aerosols confirms the
intrusion from foreign air masses in the process of high aerosol loading. Therefore, the
high loading of fine particles in Dongsha mainly originated from BC and OM brought from
the southeastern coast of China. A small amount of coarse DU particles were loaded from
Mongolia. In addition, the high fine particle loading in Taiping was mainly produced by
OM and BC, which came from Southeast Asia, including Singapore and the region between
Singapore and Indonesia.
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3.2. Back Trajectories and Aerosol Optical Properties over Dongsha Island and Taiping Island

The Hysplit Dispersion Model was used to calculate the 120-h backward trajectory
ending at Dongsha and Taiping to determine the source of the air mass (Figure 8). Each
trajectory was linked to the corresponding aerosol optical depths. Previously, this method
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has been widely used to evaluate the distribution characteristics of aerosol optical depths
of different air masses [30,31].
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shown in the panel.
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Broad geographic areas are divided based on the possibility of determining the major
sources of aerosol type and optical depth. In this way, the definitions of the A, B, C
and D sectors are constrained by optical depth in the different areas. The large degree
of arbitrariness may stem from the choice of borders. By considering τ and the different
sectors along the trajectory, the sector of origin of the aerosol can be determined. We defined
four broad geographical sectors, displayed in Figure 8, in relation to different aerosol optical
depths; four broad geographical sectors are defined in Figure 8. The identified sectors
at Dongsha were: (A) North of Dongsha Island, where aerosols mainly come from the
southeast coast of China (46%); (B) The western sector (36%), which includes the China-
Indochina Peninsula and the SCS; in this region, the prevalent sources produce continental
and, to a lesser extent, marine aerosols; (C) the southeast sector (17%), coinciding with the
Luzon Strait and the SCS; (D) other parts had no obvious boundary (1%), and the proportion
was negligible. The identified sectors at Taiping were: (A) the southwestern portion of
Taiping Island (21%), which is largely bounded by Singapore and Indonesia, together which
provides an important source of urban aerosols; (B) an east-north sector (55%), coinciding
with the Philippines; in this region, the prevalent sources produce continental aerosols and,
to a lesser extent, marine aerosols; (C) an East-South sector (10%), which included the Sulu
Sea; (D) Other parts (14%), which accounted for less and have unclear boundaries, were
not analyzed in this study.

The source distribution of the air mass in the Dongsha area will be described first. The
high aerosol loads were well identified from the trajectory analysis and correspond to class
A. As we mentioned earlier, aerosols from sector A had the largest average aerosol optical
depth (0.35 ± 0.23) (Figure 9(a1)). In addition, 80% of α values in class A were higher than 1
(Figure 9(b1)). Sector A mainly originates from the southeast coast of China. As mentioned
above, this part of the air mass mainly contains polluting fine aerosol loading. Sector C
particles had the smallest τ (0.14 ± 0.11) and α ranging from 0.15 and 1.95. This means
that part C mainly included clean aerosols, with a relatively uniform distribution of coarse
and fine particles. Sector B includes the China-Indochina Peninsula and the SCS. In this
region, the possible sources produce continental and, to a lesser extent, marine aerosols.
The optical depth value of part B was lower than that of the polluting source of part A
and higher than that of the cleaning source of part C. In part B, the central value (xc) of α
was smaller than 1, indicating that marine aerosols bring about the significant growth of
coarse particles. It must be emphasized that different aerosol types may be present in the
air column simultaneously, influencing the observed optical parameters.

Interestingly, the relationship between the aerosol optical depth and wavelength index
in different parts of the Taiping area has a similar distribution to that in the Dongsha area
(Figure 9(a2,b2)). Similar to sector A of the Dongsha area discussed above, some of these
cases are due to the intrusion of anthropogenic aerosols in the southwest, which produced
high aerosol loading. In Part B, due to the addition of marine aerosols, the loading of coarse
particles increases, and in Part C, there are mainly clean aerosols.

In summary, (1) the pollution aerosol in the Dongsha area mainly originates from
the southeast coast of China, which mainly contains some fine particles; (2) the mixing of
marine aerosols in the southwest of the Dongsha area increased the proportion of coarse
particles; (3) the pollution aerosol in the Taiping area mainly originates from the area
between Indonesia and Singapore; (4) The source of marine aerosol on Taiping Island may
be more from the northeast direction; and (5) a small number of clean aerosol sources enter
from the southeast of the two places, and the coarse and fine particles of this part of the
aerosol were evenly distributed.

3.3. Seasonal Properties of Aerosol over Dongsha Island and Taiping Island

Monthly mean values of τ (500 nm), τF (500 nm), τC (500 nm), α (440–870 nm), FMF
and their corresponding standard deviations in Dongsha and Taiping from January 2018
to December 2020 are shown in Figure 10a,b. The monthly average value is derived from
the daily average data. The large values of τ (500 nm), indicating the high aerosol load,



Remote Sens. 2023, 15, 501 11 of 16

were observed in March-April, while the minimum (0.093–0.096) was observed in June-July
(Figure 10(a1)). The monthly value of α (440–870 nm) was always approximately 1, and
all mean values of FMF were higher than 0.5, reflecting a relatively high fine particle
loading in each month, especially in spring and autumn (Figure 10(b1)). For summer
(May-August), the monthly mean values of mean α (440–870 nm) gradually decreased
from 1.17 to 0.87, and the FMF decreased from 0.62 to 0.52, indicating an increase in coarse
particle contribution during these months (Figure 10(b1)). It is also worth noting that all τF

(500 nm) showed a pronounced decrease in summer, suggesting decreased loads of fine
particles (Figure 10(a1)).
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Figure 9. Distribution of the frequency of occurrences of (a1,a2) τ, and (b1,b2) α in three sectors:
A, B, C. These data are shown in black (sector A), blue (sector B) and red (sector C). The distri-
bution of different sectors (colored lines) was identified by Gaussian fitting (fitted line, y = y0 +
(A/(w*sqrt(pi/2)))*exp(−2*((x − xc)/w)ˆ2)). The center value (xc) and waist width (w) of each part
of the Gaussian function are shown.

Figure 11 shows the monthly wind direction probability obtained at Dongsha Island
and Taiping Island from 2018 to 2020. In summer (May–August), the south wind prevails in
the Dongsha area, while the northeast wind prevails in other seasons. In fact, northeasterly
winds will bring more anthropogenic pollution sources (OC, BC, etc.) and dust aerosols,
while in summer, there were no significant pollution intrusions. Additionally, the summer
monsoon and southwest ocean current over the SCS (Figure 12) during this season may
favour the accumulation of marine aerosols that can explain the coarse particle loads during
summer in comparison with spring and autumn. In addition, the aerosols show lower fine
particle loading and higher coarse particle loading in winter (Figure 10(a1)). At the same
time, the monthly mean α (440–870 nm) of aerosols in winter was not more than 1, and the
mean FMF value was approximately 0.5, indicating that the Dongsha area in winter has a
higher loading of coarse particles than that in other seasons. In this sense, the high mass of
sea salt aerosols observed in winter was associated with the increase in the significant height
of combined wind waves and swell (SWH) (see, for example, Figure 10(c1)). The low aerosol
loads registered in winter can be explained by the (Figure 10(c1)) high sea salt aerosol loads
and the absence of pollution intrusions in this period. Figure 10(a2,b2,c2) shows the monthly
mean values of τ (500 nm), τF (500 nm) and τC (500 nm) as well as α (440–870 nm) and FMF
with the corresponding standard deviations at Taiping from January 2018 to December 2020.
The largest values of τ (500 nm) were observed during August-September, while the lowest
values (0.06–0.08) were measured from October to January (Figure 10(a2)). According to the
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conclusion in Section 3.1, the high aerosol loading in August and September was mainly
due to the high polluting aerosol brought by the southwest air mass. In addition, the
pollution transport from the middle sea area surrounded by Singapore and Indonesia may
be brought with the southwest wind at Taiping Island (Figure 11). There is no doubt that in
winter, strong waves bring more sea salt aerosols in the Taiping area and the Dongsha area,
making the aerosol optical depth at low values. Therefore, we can conclude that the unique
meteorological characteristics and large-scale circulation in the South China Sea bring about
different aerosol sources in the surrounding waters and then drive the aerosol properties of
Dongsha Island and Taiping Island to show obvious monthly variation characteristics.
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mass concentration FMF in Dongsha and Taiping from January 2018 to December 2020. The error
bars are standard deviations.
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3.4. Regional Properties of Aerosol over the South China Sea

In this study, the AERONET data of Dongsha Island, Taiping Island and their sur-
rounding four AERONET stations (see Figure 1) from 1 January 2018 to 31 December 2020
were used to study regional properties of aerosol over SCS (Figure 13). To analyze aerosol
regional variability, we compared nearby sites using only time-consistent aerosol data
(Table 3). Figure 13a shows comparisons of the daily average τ (500 nm) at Dongsha Island
and Hong Kong Island from 1 January 2018 to 31 December 2020. Hong Kong is about
315 km from Dongsha Island. The temporal variation in the daily mean of τ (500 nm) was
similar for both sites on most days during the analysis period, indicating that the processes
controlling aerosol loading at both sites were similar. The correlation coefficient R between
these two sites is 0.87. However, there are also large differences on some days (for example,
τ (500 nm) at Dongsha Island was 0.05 on 1 July 2019, compared to 0.22 in Hong Kong).
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Table 3. Mean value of τ, α (440–870 nm), τF (500 nm), τC (500 nm) and FMF obtained over Dongsha
(DS), NSPO (NS), Hong Kong (HK), Taiping (TP), Nha Trang (NT) and Singapore (SP). Here, the
same time series of stations are compared with Dongsha Island and Taiping Island from 1 January
2018 to 31 December 2020.

DS HK DS NS DS TP TP NT TP SP

τ (1020 nm) 0.09 0.17 0.11 0.13 0.13 0.08 0.08 0.12 0.09 0.14
τ (500 nm) 0.21 0.44 0.25 0.35 0.31 0.16 0.14 0.27 0.17 0.37
τ (380 nm) 0.29 0.56 0.33 0.46 0.41 0.19 0.18 0.38 0.21 0.51

α 1.17 1.27 1.02 1.25 1.14 0.99 0.90 1.20 0.94 1.31
τF 0.15 0.37 0.18 0.31 0.24 0.10 0.08 0.21 0.10 0.30
τC 0.06 0.06 0.06 0.04 0.06 0.05 0.06 0.06 0.06 0.06

FMF 0.66 0.77 0.63 0.8 0.68 0.57 0.52 0.69 0.55 0.74
Coincident day 212 212 197 197 210 210 154 154 310 310

Differences in the timing and intensity of anthropogenic aerosol intrusion into these
sites are most likely responsible for the differences in aerosol loading in these regions. In
fact, the correlation in τF (500 nm) between Dongsha Island and Hongkong, R, is 0.82. The
aerosol properties in the Dongsha area and NSPO area were also compared, and similar
high correlation results were obtained (R = 0.73 for τF (500 nm)). From long wavelength
(1020 nm) to short wavelength (380 nm), the difference between Dongsha Island and the
other two places was becoming more and more obvious (Table 3). This is consistent with
the previous conclusion that aerosol loading in the Dongsha area is mainly affected by
fine particles in the southeast coast of China. On the other hand, for Taiping Island, the
variation of optical depth in Taiping island was similar to those in Nha Trang (Figure 13d)
and Singapore (Figure 13e). There is no doubt that the South China Sea region shows a
similar coarse particle loading, and the coarse particle optical depth of the whole study
area was maintained at about 0.06. In addition, the aerosol loading in Taiping area is
significantly weaker than that in Dongsha Island, but the proportion of coarse particles
(FMF = 0.57) was significantly higher than that in Dongsha Island (FMF = 0.68). Thus, we
can conclude that the aerosols in the South China Sea were greatly affected by the aerosols
in the surrounding urban areas, and the variation was very consistent with surrounding
urban areas, but the aerosol loading was far lower than that in the coastal cities.

4. Conclusions

With unbalanced socio-economic development and a complex meteorological system,
the aerosol pollutants in the South China Sea are of various types. To investigate the change
of columnar aerosol properties over time and space in this little-studied region, aerosol
optical depths obtained over Dongsha Island, Taiping Island, and four other nearby sites in
the SCS were analysed. Within the analysed period, the mean of observed τ (500 nm) values
over Dongsha Island and Taiping Island were significantly higher than those reported in
the open ocean unaffected by long-range aerosol transport. The high aerosol loads over
Dongsha were mainly linked to anthropogenic fine particle transport from the southeast
coast of China and the occasional advection of desert dust from Mongolian areas. The high
fine aerosol loading in the Taiping area originates from the southwestern region between
Singapore and Indonesia.

The intrusion of aerosol particles from the southeastern coast of China, Singapore and
Indonesia has brought high loading to the aerosols in the SCS. In particular, in the Dongsha
area, 46% of the air masses come from the southeast coast of China, 36% from the China-
Indochina Peninsula and the South China Sea, and 17% from the Luzon Strait and the SCS.
Similarly, the Taiping area was also disturbed by various sources of air masses. Twenty-one
percent of the air masses come from the area enclosed by Singapore and Indonesia, 55%
from the Philippines, and 10% from the Sulu sea and the SCS.

The obvious seasonal cycles of aerosol optical depth and Ångström exponent over
the SCS are caused by the seasonal distribution of meteorological regime over the SCS and
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the mechanism of aerosol sources. In the Dongsha area, particles originating from spring
show a maximum in aerosol optical depth, while in the Taiping area, aerosol particles from
autumn show a higher optical depth. The seasonal increase of aerosol optical depth was
related to the seasonal ocean current and wind direction in the SCS. In addition, the high
wave height in winter in the two places produces the most sea salt aerosols, resulting in
the smallest wavelength index and the lowest proportion of fine particles in Dongsha and
Taiping. Aerosols in the SCS were greatly affected by the aerosols in the surrounding urban
areas, and the variation was very consistent with surrounding urban areas, but the aerosol
loading was far weaker than that in the coastal city.
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