Fusing Multiple Land Cover Products Based on Locally Estimated Map-Reference Cover Type Transition Probabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Augmented Sampling and Accuracy Assessment
2.3. Methods for Multiple Land Cover Product Fusion
2.3.1. Weighting by Localized Map-Reference Cover Type Transition Probabilities (TP)
2.3.2. Random Forest-Based Modeling (RF)
2.3.3. Modified Dempster–Shafer (D-S) Method
3. Results
3.1. Accuracy Assessment of Base Land Cover Products
3.2. Accuracy Assessment of Fused Land Cover Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Accuracy Assessment
Appendix A.1. Sampling Design and Augmented Sampling
TOTAL | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | ||
ⅢC1 | 61 (−4) | 41 (+7) | 84 (+2) | 0 (+5) | 0 (+23) | 0 (+13) | 0 (+5) | 0 (+2) | 186 (−4) (+57) |
ⅢB3 | 143 (−12) | 206 (+1) | 27 (−6) | 0 (+53) | 1 (+44) | 2 (+35) | 15 (+74) | 0 (+1) | 394 (−18) (+208) |
ⅣA2 | 41 (+1) | 155 (−8) | 12 (−3) | 1 (+20) | 0 (+8) | 0 (+32) | 0 (+5) | 0 (0) | 209 (−11) (+66) |
ⅡC1 | 20 (+15) | 0 (+1) | 70 (−3) | 1 (+12) | 0 (+8) | 1 (+9) | 2 (+1) | 3 (+30) | 97 (−3) (+76) |
ⅡC2 | 21 (0) | 1 (−1) | 37 (+10) | 0 (+9) | 0 (+16) | 2 (+7) | 1 (+1) | 5 (+61) | 67 (−1) (+104) |
TOTAL | 286 (−16) (+16) | 403 (−9) (+9) | 230 (−12) (+12) | 2 (+99) | 1 (+99) | 5 (+96) | 18 (+86) | 8 (+94) | 953 (−37) (+511) |
Appendix A.2. Response Design and Analysis
Appendix B. Error Matrices of Base and Fused Land Cover Products
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 24.91 | 1.53 | 3.06 | 0.44 | 0.00 | 0.44 | 0.66 | 0.22 | 31.25 | 79.72 (3.37) |
Forest | 1.11 | 41.34 | 2.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 44.67 | 92.54 (1.86) |
Grassland | 2.51 | 0.36 | 12.36 | 4.84 | 0.00 | 0.00 | 0.18 | 0.36 | 20.60 | 60.00 (4.59) |
Shrubland | 0.03 | 0.02 | 0.03 | 0.07 | 0.00 | 0.00 | 0.01 | 0.00 | 0.16 | 46.00 (7.12) |
Wetland | 0.02 | 0.00 | 0.00 | 0.01 | 0.05 | 0.03 | 0.00 | 0.00 | 0.11 | 44.00 (7.09) |
Water bodies | 0.00 | 0.02 | 0.02 | 0.00 | 0.04 | 0.33 | 0.00 | 0.00 | 0.41 | 82.00 (5.49) |
Artificial surfaces | 0.54 | 0.00 | 0.12 | 0.17 | 0.00 | 0.00 | 1.33 | 0.00 | 2.16 | 61.54 (6.81) |
Bare land | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | 0.40 | 0.64 | 62.75 (6.84) |
TOTAL | 29.12 | 43.26 | 17.82 | 5.76 | 0.09 | 0.81 | 2.17 | 0.98 | ||
PA(SE) | 85.57 (2.44) | 95.55 (1.37) | 69.36 (4.37) | 1.27 (0.27) | 54.86 (11.34) | 41.26 (15.84) | 61.22 (12.04) | 41.16 (14.26) | 80.80 (1.65) |
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 18.42 | 1.40 | 3.00 | 0.00 | 0.20 | 0.20 | 1.20 | 0.20 | 24.62 | 74.80 (3.93) |
Forest | 1.58 | 43.24 | 2.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.09 | 91.83 (1.90) |
Grassland | 5.34 | 1.38 | 10.68 | 5.73 | 0.00 | 0.00 | 0.59 | 0.20 | 23.93 | 44.63 (4.54) |
Shrubland | 0.24 | 0.00 | 0.05 | 0.82 | 0.00 | 0.00 | 0.00 | 0.12 | 1.24 | 66.67 (6.67) |
Wetland | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.05 | 0.00 | 0.00 | 0.10 | 44.00 (7.09) |
Water bodies | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.22 | 96.00 (2.80) |
Artificial surfaces | 0.13 | 0.03 | 0.00 | 0.00 | 0.03 | 0.00 | 1.42 | 0.03 | 1.65 | 86.27 (4.87) |
Bare land | 0.20 | 0.00 | 0.00 | 0.45 | 0.00 | 0.00 | 0.00 | 0.50 | 1.16 | 43.14 (7.00) |
TOTAL | 25.92 | 46.06 | 16.00 | 7.01 | 0.28 | 0.46 | 3.21 | 1.05 | ||
PA(SE) | 71.05 (3.18) | 93.87 (1.49) | 66.76 (4.79) | 11.76 (1.88) | 15.91 (11.66) | 45.89 (20.15) | 44.18 (8.20) | 47.45 (13.59) | 75.33 (1.71) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 20.62 | 2.95 | 12.76 | 5.50 | 0.00 | 0.00 | 1.77 | 1.18 | 44.77 | 46.05 (3.31) |
Forest | 2.76 | 43.51 | 1.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.65 | 91.30 (1.96) |
Grassland | 0.43 | 0.22 | 1.95 | 0.72 | 0.00 | 0.22 | 0.00 | 0.29 | 3.82 | 50.94 (6.93) |
Shrubland | 0.08 | 0.05 | 0.24 | 0.41 | 0.00 | 0.00 | 0.00 | 0.02 | 0.80 | 52.00 (7.14) |
Wetland | 0.00 | 0.01 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.05 | 58.00 (7.05) |
Water bodies | 0.01 | 0.02 | 0.01 | 0.00 | 0.03 | 0.38 | 0.01 | 0.01 | 0.46 | 82.00 (5.49) |
Artificial surfaces | 0.65 | 0.14 | 0.33 | 0.00 | 0.05 | 0.00 | 1.22 | 0.05 | 2.43 | 50.00 (7.00) |
Bare land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 72.00 (6.41) |
TOTAL | 24.56 | 46.88 | 16.67 | 6.63 | 0.11 | 0.61 | 2.99 | 1.55 | ||
PA(SE) | 83.95 (2.93) | 92.80 (1.49) | 11.69 (1.74) | 6.23 (1.23) | 28.87 (13.42) | 62.64 (12.76) | 40.61 (8.55) | 0.67 (0.22) | 68.12 (1.78) |
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 23.12 | 3.14 | 3.37 | 0.22 | 0.22 | 0.22 | 0.45 | 0.22 | 30.97 | 74.64 (3.72) |
Forest | 0.90 | 41.20 | 2.46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 44.55 | 92.46 (1.88) |
Grassland | 1.96 | 1.78 | 11.06 | 3.75 | 0.00 | 0.00 | 0.18 | 1.25 | 19.98 | 55.36 (4.72) |
Shrubland | 0.02 | 0.02 | 0.03 | 0.08 | 0.00 | 0.00 | 0.01 | 0.00 | 0.15 | 50.00 (7.14) |
Wetland | 0.02 | 0.00 | 0.00 | 0.00 | 0.07 | 0.03 | 0.00 | 0.00 | 0.12 | 56.00 (7.09) |
Water bodies | 0.02 | 0.02 | 0.01 | 0.00 | 0.04 | 0.33 | 0.01 | 0.00 | 0.42 | 78.00 (5.92) |
Artificial surfaces | 0.66 | 0.00 | 0.24 | 0.12 | 0.00 | 0.00 | 2.11 | 0.06 | 3.19 | 66.04 (6.57) |
Bare land | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.01 | 0.01 | 0.45 | 0.60 | 74.51 (6.16) |
TOTAL | 26.69 | 46.16 | 17.17 | 4.30 | 0.34 | 0.60 | 2.76 | 1.98 | ||
PA(SE) | 86.62 (2.47) | 89.24 (1.88) | 64.42 (4.58) | 1.77 (0.41) | 20.49 (13.90) | 55.45 (20.95) | 76.23 (10.19) | 22.54 (6.03) | 78.41 (1.72) |
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 18.34 | 2.47 | 1.44 | 0.21 | 0.00 | 0.41 | 1.03 | 0.00 | 23.90 | 76.72 (3.94) |
Forest | 0.90 | 43.40 | 2.92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 47.22 | 91.90 (1.89) |
Grassland | 3.98 | 1.39 | 13.91 | 3.58 | 0.00 | 0.00 | 0.40 | 0.20 | 23.45 | 59.32 (4.54) |
Shrubland | 0.42 | 0.00 | 0.05 | 0.63 | 0.00 | 0.00 | 0.03 | 0.21 | 1.34 | 47.06 (7.06) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.07 | 0.00 | 0.00 | 0.14 | 40.00 (7.00) |
Water bodies | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.25 | 0.00 | 0.00 | 0.26 | 98.00 (2.00) |
Artificial surfaces | 0.27 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 2.45 | 0.05 | 2.83 | 86.79 (4.70) |
Bare land | 0.37 | 0.00 | 0.03 | 0.07 | 0.02 | 0.00 | 0.00 | 0.37 | 0.86 | 43.14 (7.00) |
TOTAL | 24.27 | 47.32 | 18.36 | 4.49 | 0.08 | 0.74 | 3.91 | 0.83 | ||
PA(SE) | 75.55 (3.08) | 91.72 (1.66) | 75.76 (4.16) | 14.09 (3.12) | 71.59 (16.64) | 34.31 (13.45) | 62.76 (8.64) | 44.39 (12.25) | 79.41 (1.69) |
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 15.03 | 2.23 | 5.75 | 0.93 | 0.00 | 0.37 | 0.56 | 0.37 | 25.23 | 59.56 (4.22) |
Forest | 2.28 | 43.60 | 3.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 49.31 | 88.43 (2.18) |
Grassland | 1.56 | 1.56 | 6.23 | 2.72 | 0.00 | 0.00 | 0.19 | 0.19 | 12.46 | 50.00 (6.30) |
Shrubland | 0.01 | 0.05 | 0.12 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 30.00 (6.55) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 22.00 (5.91) |
Water bodies | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.41 | 100.00 (0) |
Artificial surfaces | 0.49 | 0.14 | 0.77 | 0.07 | 0.14 | 0.00 | 2.17 | 0.00 | 3.77 | 57.41 (6.79) |
Bare land | 2.90 | 0.29 | 2.76 | 1.89 | 0.00 | 0.00 | 0.29 | 0.44 | 8.56 | 5.08 (2.88) |
TOTAL | 22.27 | 47.87 | 19.05 | 5.68 | 0.14 | 0.78 | 3.21 | 1.00 | ||
PA(SE) | 67.48 (3.52) | 91.09 (1.60) | 32.70 (3.64) | 1.33 (0.35) | 1.44 (17.33) | 51.91 (17.33) | 67.53 (9.33) | 43.49 (19.87) | 67.94 (1.74) |
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 23.49 | 0.66 | 2.59 | 0.48 | 0.00 | 0.22 | 0.91 | 0.22 | 28.57 | 82.22 (3.25) |
Forest | 2.86 | 41.55 | 2.18 | 0.05 | 0.00 | 0.23 | 0.00 | 0.00 | 46.87 | 88.66 (2.11) |
Grassland | 1.65 | 1.03 | 12.58 | 0.91 | 0.00 | 0.01 | 0.00 | 0.00 | 16.17 | 77.77 (4.48) |
Shrubland | 0.55 | 0.01 | 0.38 | 3.99 | 0.00 | 0.00 | 0.18 | 0.40 | 5.51 | 72.33 (7.92) |
Wetland | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.02 | 0.00 | 0.00 | 0.07 | 55.73 (9.88) |
Water bodies | 0.00 | 0.01 | 0.02 | 0.00 | 0.05 | 0.33 | 0.00 | 0.00 | 0.41 | 81.60 (5.08) |
Artificial surfaces | 0.37 | 0.00 | 0.08 | 0.08 | 0.00 | 0.00 | 1.08 | 0.00 | 1.62 | 66.67 (7.62) |
Bare land | 0.18 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 0.00 | 0.37 | 0.78 | 46.62 (11.99) |
TOTAL | 29.12 | 43.26 | 17.82 | 5.76 | 0.09 | 0.81 | 2.17 | 0.98 | ||
PA(SE) | 80.67 (3.09) | 96.05 (1.34) | 70.60 (4.54) | 69.20 (7.60) | 43.94 (11.10) | 41.09 (15.80) | 49.74 (10.67) | 37.30 (13.10) | 83.42 (1.61) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 23.00 | 0.67 | 3.85 | 0.29 | 0.22 | 0.22 | 0.75 | 0.22 | 29.24 | 78.67 (3.51) |
Forest | 1.75 | 43.99 | 3.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 48.77 | 90.20 (1.98) |
Grassland | 1.12 | 1.47 | 9.11 | 0.73 | 0.00 | 0.00 | 0.00 | 0.36 | 12.79 | 71.23 (5.41) |
Shrubland | 0.37 | 0.01 | 1.08 | 3.09 | 0.00 | 0.00 | 0.01 | 0.93 | 5.49 | 56.28 (8.87) |
Wetland | 0.01 | 0.00 | 0.00 | 0.00 | 0.05 | 0.02 | 0.00 | 0.00 | 0.09 | 58.33 (8.30) |
Water bodies | 0.02 | 0.02 | 0.01 | 0.00 | 0.06 | 0.34 | 0.01 | 0.00 | 0.45 | 75.38 (5.70) |
Artificial surfaces | 0.42 | 0.00 | 0.12 | 0.06 | 0.00 | 0.00 | 1.99 | 0.06 | 2.65 | 74.94 (6.58) |
Bare land | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.01 | 0.00 | 0.41 | 0.52 | 79.55 (6.14) |
TOTAL | 26.69 | 46.16 | 17.17 | 4.30 | 0.34 | 0.60 | 2.76 | 1.98 | ||
PA(SE) | 86.19 (2.79) | 95.29 (1.33) | 53.05 (4.90) | 71.90 (8.67) | 15.37 (10.56) | 56.68 (21.41) | 71.99 (10.08) | 20.76 (5.64) | 81.98 (1.65) |
Map | Reference | TOTAL | UA (SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 24.04 | 0.84 | 2.33 | 0.55 | 0.02 | 0.24 | 0.99 | 0.23 | 29.24 | 82.21 (3.11) |
Forest | 1.33 | 41.78 | 1.33 | 0.01 | 0.00 | 0.04 | 0.00 | 0.00 | 44.50 | 93.90 (1.67) |
Grassland | 2.57 | 0.64 | 13.57 | 0.65 | 0.00 | 0.02 | 0.00 | 0.01 | 17.45 | 77.72 (4.31) |
Shrubland | 0.72 | 0.00 | 0.54 | 4.39 | 0.00 | 0.01 | 0.18 | 0.32 | 6.16 | 71.37 (7.50) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.03 | 76.92 (11.80) |
Water bodies | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.49 | 0.00 | 0.00 | 0.55 | 90.10 (5.13) |
Artificial surfaces | 0.47 | 0.00 | 0.04 | 0.04 | 0.00 | 0.00 | 1.00 | 0.00 | 1.55 | 64.40 (11.31) |
Bare land | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.42 | 0.53 | 78.68 (9.35) |
TOTAL | 29.12 | 43.26 | 17.82 | 5.76 | 0.09 | 0.81 | 2.17 | 0.98 | ||
PA(SE) | 82.56 (3.04) | 96.58 (1.26) | 76.14 (4.40) | 76.29 (6.88) | 24.94 (7.82) | 60.96 (19.87) | 45.91 (10.2) | 42.71 (16.62) | 85.71 (1.50) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 23.95 | 1.84 | 1.95 | 0.30 | 0.24 | 0.24 | 0.75 | 0.23 | 29.49 | 81.19 (3.22) |
Forest | 0.68 | 43.19 | 1.98 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 45.87 | 94.14 (1.62) |
Grassland | 1.39 | 1.12 | 12.58 | 0.57 | 0.01 | 0.02 | 0.06 | 0.54 | 16.28 | 77.25 (4.49) |
Shrubland | 0.36 | 0.00 | 0.54 | 3.34 | 0.00 | 0.00 | 0.00 | 0.74 | 4.97 | 67.15 (8.52) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.05 | 68.42 (10.77) |
Water bodies | 0.02 | 0.02 | 0.01 | 0.00 | 0.05 | 0.32 | 0.01 | 0.00 | 0.42 | 76.32 (5.83) |
Artificial surfaces | 0.30 | 0.00 | 0.12 | 0.06 | 0.00 | 0.00 | 1.92 | 0.06 | 2.47 | 78.03 (6.65) |
Bare land | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.43 | 0.45 | 94.76 (4.15) |
TOTAL | 26.69 | 46.16 | 17.17 | 4.30 | 0.34 | 0.60 | 2.76 | 1.98 | ||
PA(SE) | 89.72 (2.52) | 93.55 (1.55) | 73.25 (4.67) | 77.69 (8.10) | 9.51 (6.74) | 53.79 (20.47) | 69.62 (9.62) | 21.46 (9.10) | 85.75 (1.48) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 26.01 | 1.73 | 3.43 | 0.76 | 0.01 | 0.44 | 0.95 | 0.45 | 33.78 | 77.02 (3.22) |
Forest | 0.89 | 41.52 | 2.77 | 0.02 | 0.01 | 0.05 | 0.00 | 0.00 | 45.27 | 91.72 (1.88) |
Grassland | 2.20 | 0.01 | 11.58 | 4.76 | 0.00 | 0.02 | 0.18 | 0.22 | 18.96 | 61.07 (4.74) |
Shrubland | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.05 | 0.09 | 41.80 (18.45) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.02 | 54.55 (15.16) |
Water bodies | 0.01 | 0.01 | 0.00 | 0.00 | 0.05 | 0.28 | 0.00 | 0.00 | 0.35 | 79.63 (5.16) |
Artificial surfaces | 0.00 | 0.00 | 0.04 | 0.04 | 0.00 | 0.00 | 1.04 | 0.00 | 1.12 | 92.61 (5.07) |
Bare land | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 | 0.26 | 0.40 | 65.62 (8.48) |
TOTAL | 29.12 | 43.26 | 17.82 | 5.76 | 0.09 | 0.81 | 2.17 | 0.98 | ||
PA(SE) | 89.35 (2.38) | 95.98 (1.37) | 64.98 (4.69) | 0.66 (0.38) | 14.96 (6.10) | 34.88 (13.63) | 47.97 (10.46) | 27.01 (9.98) | 80.75 (1.64) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 24.23 | 0.22 | 2.20 | 0.97 | 0.02 | 0.23 | 0.78 | 0.04 | 28.69 | 84.47 (2.99) |
Forest | 1.77 | 42.62 | 1.29 | 0.05 | 0.00 | 0.02 | 0.00 | 0.00 | 45.76 | 93.14 (1.71) |
Grassland | 2.93 | 0.42 | 14.10 | 0.79 | 0.00 | 0.02 | 0.04 | 0.04 | 18.34 | 76.89 (4.23) |
Shrubland | 0.18 | 0.00 | 0.00 | 3.93 | 0.00 | 0.00 | 0.18 | 0.37 | 4.66 | 84.30 (6.33) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | 0.00 | 0.05 | 53.15 (16.47) |
Water bodies | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.51 | 0.00 | 0.00 | 0.57 | 89.97 (4.83) |
Artificial surfaces | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 1.16 | 0.00 | 1.21 | 96.56 (3.41) |
Bare land | 0.00 | 0.00 | 0.18 | 0.01 | 0.00 | 0.00 | 0.00 | 0.54 | 0.73 | 73.44 (20.88) |
TOTAL | 29.12 | 43.26 | 17.82 | 5.76 | 0.09 | 0.81 | 2.17 | 0.98 | ||
PA(SE) | 83.23 (3.07) | 98.51 (0.82) | 79.14 (4.19) | 68.22 (7.86) | 28.98 (10.11) | 63.53 (20.07) | 53.71 (11.16) | 54.72 (16.87) | 87.12 (1.44) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 23.30 | 1.90 | 3.54 | 0.38 | 0.02 | 0.23 | 0.83 | 0.46 | 30.67 | 75.98 (3.41) |
Forest | 1.80 | 43.91 | 3.64 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 49.37 | 88.92 (2.06) |
Grassland | 1.12 | 0.36 | 9.65 | 3.69 | 0.00 | 0.02 | 0.06 | 0.82 | 15.72 | 61.40 (5.14) |
Shrubland | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.52 | 0.73 | 27.72 (20.36) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 100.00 (0) |
Water bodies | 0.01 | 0.00 | 0.00 | 0.00 | 0.06 | 0.32 | 0.00 | 0.00 | 0.40 | 81.50 (5.14) |
Artificial surfaces | 0.47 | 0.00 | 0.34 | 0.00 | 0.22 | 0.00 | 1.87 | 0.00 | 2.90 | 64.38 (10.23) |
Bare land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.18 | 0.19 | 93.75 (6.11) |
TOTAL | 26.69 | 46.16 | 17.17 | 4.30 | 0.34 | 0.60 | 2.76 | 1.98 | ||
PA(SE) | 87.31 (2.84) | 95.11 (1.41) | 56.21 (4.85) | 4.70 (4.09) | 5.85 (4.35) | 53.87 (20.51) | 67.66 (9.32) | 8.90 (2.98) | 79.45 (1.70) |
Map | Reference | TOTAL | UA(SE) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | |||
Cultivated land | 23.30 | 1.68 | 1.09 | 0.09 | 0.02 | 0.24 | 0.59 | 0.00 | 27.02 | 86.25 (2.85) |
Forest | 1.13 | 44.08 | 2.16 | 0.02 | 0.00 | 0.00 | 0.06 | 0.00 | 47.46 | 92.89 (1.72) |
Grassland | 2.01 | 0.40 | 13.25 | 0.41 | 0.00 | 0.00 | 0.00 | 0.38 | 16.47 | 80.47 (4.28) |
Shrubland | 0.00 | 0.00 | 0.54 | 3.70 | 0.00 | 0.01 | 0.00 | 0.70 | 4.95 | 74.71 (7.84) |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 100.00 (0) |
Water bodies | 0.01 | 0.00 | 0.01 | 0.00 | 0.06 | 0.34 | 0.01 | 0.00 | 0.43 | 80.07 (5.32) |
Artificial surfaces | 0.24 | 0.00 | 0.12 | 0.06 | 0.22 | 0.00 | 2.10 | 0.00 | 2.75 | 76.48 (8.53) |
Bare land | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.90 | 0.91 | 98.71 (1.37) |
TOTAL | 26.69 | 46.16 | 17.17 | 4.30 | 0.34 | 0.60 | 2.76 | 1.98 | ||
PA(SE) | 87.30 (2.84) | 95.49 (1.37) | 77.18 (4.45) | 86.10 (5.97) | 6.59 (4.82) | 57.26 (21.71) | 75.99 (8.47) | 45.40 (13.27) | 87.70 (1.42) |
References
- Loveland, T.; Belward, A. The IGBP-DIS Global 1-Km Land Cover Data Set, DIScover: First Results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A. GLC2000: A New Approach to Global Land Cover Mapping from Earth Observation Data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Wang, X.; Ning, G.; Xu, B. Production of Global Daily Seamless Data Cubes and Quantification of Global Land Cover Change from 1985 to 2020—IMap World 1.0. Remote Sens. Environ. 2021, 258, 112364. [Google Scholar] [CrossRef]
- Fritz, S.; See, L. Identifying and Quantifying Uncertainty and Spatial Disagreement in the Comparison of Global Land Cover for Different Applications. Glob. Chang. Biol. 2008, 14, 1057–1075. [Google Scholar] [CrossRef]
- Nelson, M.D.; Garner, J.D.; Tavernia, B.G.; Stehman, S.V.; Riemann, R.I.; Lister, A.J.; Perry, C.H. Assessing Map Accuracy from a Suite of Site-Specific, Non-Site Specific, and Spatial Distribution Approaches. Remote Sens. Environ. 2021, 260, 112442. [Google Scholar] [CrossRef]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting Synergies of Global Land Cover Products for Carbon Cycle Modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. A Methodology to Generate a Synergetic Land-Cover Map by Fusion of Different Land-Cover Products. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 72–87. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some Challenges in Global Land Cover Mapping: An Assessment of Agreement and Accuracy in Existing 1 Km Datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A Spatial Comparison of Four Satellite Derived 1 km Global Land Cover Datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Li, Z.; White, J.C.; Wulder, M.A.; Hermosilla, T.; Davidson, A.M.; Comber, A.J. Land Cover Harmonization Using Latent Dirichlet Allocation. Int. J. Geogr. Inf. Sci. 2021, 35, 348–374. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; Udías, A.; Rembold, F. Integrating Multiple Land Cover Maps through a Multi-Criteria Analysis to Improve Agricultural Monitoring in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102064. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Iwao, K.; Yamagata, Y. Creation of a Global Land Cover and a Probability Map through a New Map Integration Method. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 70–77. [Google Scholar] [CrossRef]
- See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, I.; Fritz, S.; Comber, A.; Perger, C.; Schill, C.; Zhao, Y.; Maus, V.; et al. Building a Hybrid Land Cover Map with Crowdsourcing and Geographically Weighted Regression. Int. Soc. Photogramm. Remote Sens. J. Photogramm. Remote Sens. 2015, 103, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Tsendbazar, N.-E.; de Bruin, S.; Fritz, S.; Herold, M. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sens. 2015, 7, 15804–15821. [Google Scholar] [CrossRef] [Green Version]
- Tsendbazar, N.-E.; de Bruin, S.; Herold, M. Integrating Global Land Cover Datasets for Deriving User-Specific Maps. Int. J. Digit. Earth 2017, 10, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Lesiv, M.; Moltchanova, E.; Schepaschenko, D.; See, L.; Shvidenko, A.; Comber, A.; Fritz, S. Comparison of Data Fusion Methods Using Crowdsourced Data in Creating a Hybrid Forest Cover Map. Remote Sens. 2016, 8, 261. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.H.; Li, X.; Lu, L.; Li, Z.Y. Large-Scale Land Cover Mapping with the Integration of Multi-Source Information Based on the Dempster–Shafer Theory. Int. J. Geogr. Inf. Sci. 2012, 26, 169–191. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Liu, X.; Shi, Q.; Zhuang, H.; Cai, Y.; He, D. An Improved Global Land Cover Mapping in 2015 with 30 m Resolution (GLC-2015) Based on a Multi-Source Product Fusion Approach. Earth Syst. Sci. Data Discuss. 2022, 2022, 1–35. [Google Scholar] [CrossRef]
- Huang, A.; Shen, R.; Li, Y.; Han, H.; Di, W.; Hagan, D.F. A Methodology to Generate Integrated Land Cover Data for Land Surface Model by Improving Dempster-Shafer Theory. Remote Sens. 2022, 14, 972. [Google Scholar] [CrossRef]
- Tuanmu, M.-N.; Jetz, W. A Global 1-Km Consensus Land-Cover Product for Biodiversity and Ecosystem Modelling. Glob. Ecol. Biogeogr. 2014, 23, 1031–1045. [Google Scholar] [CrossRef]
- Nabil, M.; Zhang, M.; Wu, B.; Bofana, J.; Elnashar, A. Constructing a 30m African Cropland Layer for 2016 by Integrating Multiple Remote Sensing, Crowdsourced, and Auxiliary Datasets. Big Earth Data 2022, 6, 54–76. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30 m Resolution: A POK-Based Operational Approach. Int. Soc. Photogramm. Remote Sens. J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Stehman, S.V.; Foody, G.M. Key Issues in Rigorous Accuracy Assessment of Land Cover Products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Zhang, W.; Wang, Y.; Liu, D.; Xiu, Y. An Explorative Study on Estimating Local Accuracies in Land-Cover Information Using Logistic Regression and Class-Heterogeneity-Stratified Data. Remote Sens. 2018, 10, 1581. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Karlsson, A. EvCombR—Evidence Combination in R; CRAN: Vienna, Austria, 2022. [Google Scholar]
- Gengler, S.; Bogaert, P. Combining Land Cover Products Using a Minimum Divergence and a Bayesian Data Fusion Approach. Int. J. Geogr. Inf. Sci. 2018, 32, 806–826. [Google Scholar] [CrossRef]
- Xu, G.; Chen, B. Generating a Series of Land Covers by Assimilating the Existing Land Cover Maps. Int. Soc. Photogramm. Remote Sens.J. Photogramm. Remote Sens. 2019, 147, 206–214. [Google Scholar] [CrossRef]
- Di Curzio, D.; Castrignanò, A.; Fountas, S.; Romić, M.; Viscarra Rossel, R.A. Multi-Source Data Fusion of Big Spatial-Temporal Data in Soil, Geo-Engineering and Environmental Studies. Sci. Total Environ. 2021, 788, 147842. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Jin, G.; Gao, D. Integrating Land-Cover Products Based on Ontologies and Local Accuracy. Information 2021, 12, 236. [Google Scholar] [CrossRef]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A Global Land-Cover Validation Data Set, Part I: Fundamental Design Principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Stehman, S.V.; Olofsson, P.; Woodcock, C.E.; Herold, M.; Friedl, M.A. A Global Land-Cover Validation Data Set, II: Augmenting a Stratified Sampling Design to Estimate Accuracy by Region and Land-Cover Class. Int. J. Remote Sens. 2012, 33, 6975–6993. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977; ISBN 047116240X. [Google Scholar]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
Globeland30 Classes | Code | FROM_GLC Classes | Code | GLC_FCS30 Classes | Code |
---|---|---|---|---|---|
Cultivated land | 10 | Cropland | 10 | Rainfed cropland | 10 |
Herbaceous cover | 11 | ||||
Irrigated cropland | 20 | ||||
Forest | 20 | Forest | 20 | Open evergreen broadleaved forest | 51 |
Closed evergreen broadleaved forest | 52 | ||||
Open deciduous broadleaved forest | 61 | ||||
Closed deciduous broadleaved forest | 62 | ||||
Open evergreen needle-leaved forest | 71 | ||||
Closed evergreen needle-leaved forest | 72 | ||||
Open deciduous needle-leaved forest | 81 | ||||
Closed deciduous needle-leaved forest | 82 | ||||
Grassland | 30 | Grass | 30 | Grassland | 130 |
Shrubland | 40 | Shrub | 40 | Shrubland | 120 |
Evergreen shrubland | 121 | ||||
Deciduous shrubland | 122 | ||||
Wetland | 50 | Wetland | 50 | Wetlands | 180 |
Water bodies | 60 | Water | 60 | Water body | 210 |
Artificial surfaces | 80 | Impervious | 80 | Impervious surfaces | 190 |
Bare land | 90 | Bareland | 90 | Sparse vegetation | 150 |
Bare areas | 200 | ||||
Unconsolidated bare areas | 202 |
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | Total | ||
---|---|---|---|---|---|---|---|---|---|---|
Globeland30 | 2010 | 143 (143) | 202 (201) | 115 (115) | 51 (50) | 50 (50) | 51 (50) | 52 (52) | 51 (51) | 715 (712) |
2020 | 138 (138) | 199 (199) | 112 (112) | 51 (50) | 50 (50) | 51 (50) | 54 (53) | 51 (51) | 706 (703) | |
GLC_FCS30 | 2010 | 123 (123) | 209 (208) | 121 (121) | 51 (51) | 50 (50) | 51 (50) | 52 (51) | 51 (51) | 708 (705) |
2020 | 117 (116) | 210 (210) | 119 (118) | 52 (51) | 50 (50) | 51 (50) | 54 (53) | 51 (51) | 704 (699) | |
FROM-GLC | 2010 | 229 (228) | 208 (207) | 54 (53) | 51 (50) | 50 (50) | 51 (50) | 52 (52) | 50 (50) | 745 (740) |
2020 | 137 (136) | 217 (216) | 64 (64) | 51 (50) | 50 (50) | 51 (50) | 55 (54) | 60 (59) | 685 (679) |
UA(SE) (%) | OA(SE) (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | ||
GlobeLand30 | 79.72 (3.37) | 92.54 (1.86) | 60.00 (4.59) | 46.00 (7.12) | 44.00 (7.09) | 82.00 (5.49) | 61.54 (6.81) | 62.75 (6.84) | 80.80 (1.65) |
GLC_FCS30 | 74.80 (3.93) | 91.83 (1.90) | 44.63 (4.54) | 66.67 (6.67) | 44.00 (7.09) | 96.00 (2.80) | 86.27 (4.87) | 43.14 (7.00) | 75.33 (1.71) |
FROM-GLC | 46.05 (3.31) | 91.30 (1.96) | 50.94 (6.93) | 52.00 (7.14) | 58.00 (7.05) | 82.00 (5.49) | 50.00 (7.00) | 72.00 (6.41) | 68.12 (1.78) |
UA(SE) (%) | OA(SE) (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | ||
GlobeLand30 | 74.64 (3.72) | 92.46 (1.88) | 55.36 (4.72) | 50.00 (7.14) | 56.00 (7.09) | 78.00 (5.92) | 66.04 (6.57) | 74.51 (6.16) | 78.41 (1.72) |
GLC_FCS30 | 76.72 (3.94) | 91.90 (1.89) | 59.32 (4.54) | 47.06 (7.06) | 40.00 (7.00) | 98.00 (2.00) | 86.79 (4.70) | 43.14 (7.00) | 79.41 (1.69) |
FROM-GLC | 59.56 (4.22) | 88.43 (2.18) | 50.00 (6.30) | 30.00 (6.55) | 22.00 (5.91) | 100.00 (0) | 57.41 (6.79) | 5.08 (2.88) | 67.94 (1.74) |
UA (%) | OA (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | ||
RF | 2.5 | −3.88 | 17.77 | 26.33 | 11.73 | −0.4 | 5.13 | −16.13 | 2.62 |
D-S | 2.49 | 1.36 | 17.72 | 25.37 | 32.92 | 8.1 | 2.86 | 15.93 | 4.91 |
TP | 4.75 | 0.6 | 16.89 | 38.3 | 9.15 | 7.97 | 35.02 | 10.69 | 6.32 |
CON | −2.7 | −0.82 | 1.07 | −4.2 | 10.55 | −2.37 | 31.07 | 2.87 | −0.05 |
UA (%) | OA (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bare Land | ||
RF | 4.03 | −2.26 | 15.87 | 6.28 | 2.33 | −2.62 | 8.9 | 5.04 | 3.57 |
D-S | 6.55 | 1.68 | 21.89 | 17.15 | 12.42 | −1.68 | 11.99 | 20.25 | 7.34 |
TP | 11.61 | 0.43 | 25.11 | 24.71 | 44 | 2.07 | 10.44 | 24.2 | 9.29 |
CON | 1.34 | −3.54 | 6.04 | −22.28 | 44 | 3.5 | −1.66 | 19.24 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, J.; Lin, H.; Cong, M.; Wan, Y.; Zhang, J. Fusing Multiple Land Cover Products Based on Locally Estimated Map-Reference Cover Type Transition Probabilities. Remote Sens. 2023, 15, 481. https://doi.org/10.3390/rs15020481
Zhang W, Wang J, Lin H, Cong M, Wan Y, Zhang J. Fusing Multiple Land Cover Products Based on Locally Estimated Map-Reference Cover Type Transition Probabilities. Remote Sensing. 2023; 15(2):481. https://doi.org/10.3390/rs15020481
Chicago/Turabian StyleZhang, Wangle, Jiwen Wang, Hate Lin, Ming Cong, Yue Wan, and Jingxiong Zhang. 2023. "Fusing Multiple Land Cover Products Based on Locally Estimated Map-Reference Cover Type Transition Probabilities" Remote Sensing 15, no. 2: 481. https://doi.org/10.3390/rs15020481
APA StyleZhang, W., Wang, J., Lin, H., Cong, M., Wan, Y., & Zhang, J. (2023). Fusing Multiple Land Cover Products Based on Locally Estimated Map-Reference Cover Type Transition Probabilities. Remote Sensing, 15(2), 481. https://doi.org/10.3390/rs15020481