Characterizing Transitions between Successional Stages in a Tropical Dry Forest Using LiDAR Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Forest Cover Map
2.2.2. Full-Waveform LiDAR
2.3. Data Processing
2.3.1. Transition Identification
2.3.2. Estimation of Canopy Height Variability
2.3.3. Canopy Height Comparison between Transitions and Principal Successional Stages
2.3.4. Estimation of Vertical Forest Structure
2.3.5. Derivation of LiDAR Metrics
3. Results
3.1. Transitions
3.2. Changes in Canopy Height across Transitions
3.3. Forest Structure Characteristics across Transitions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodríguez, J.P.; Jafet, M.; Stoner, K.E.; Castillo, A.; Garvin, T.; Zent, E.L.; Calvo-Alvarado, J.C.; Kalacska, M.E.R.; et al. Research Priorities for Neotropical Dry Forests. Biotropica 2005, 37, 477–485. [Google Scholar]
- Kalacska, M.; Sanchez-Azofeifa, G.A.; Rivard, B.; Caelli, T. Ecological Fingerprinting of Ecosystem Succession: Estimating Secondary Tropical Dry Forest Structure and Diversity Using Imaging Spectroscopy. Remote Sens. Environ. 2007, 108, 82–96. [Google Scholar] [CrossRef]
- Novotný, J.; Navrátilová, B.; Janoutová, R.; Oulehle, F.; Homolová, L. Influence of Site-Specific Conditions on Estimation of Forest above Ground Biomass from Airborne Laser Scanning. Forests 2020, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Yu, Q.; Sanchez-Azofeifa, A.; Feng, J.; Rivard, B.; Gu, Z. Mapping Tropical Dry Forest Succession Using Multiple Criteria Spectral Mixture Analysis. ISPRS J. Photogramm. Remote Sens. 2015, 109, 17–29. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, S.; Sanchez-Azofeifa, A.G.; Duran, S.M.; Espírito-Santo, M.M. Assessing Ecosystem Services in Neotropical Dry Forests: A Systematic Review. Environ. Conserv. 2016, 44, 34–43. [Google Scholar] [CrossRef]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a Biome Crisis: Global Disparities of Habitat Loss and Protection. Ecol. Lett. 2005, 8, 23–29. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.A.; Sánchez-Azofeifa, G.A. Extent and Conservation of Tropical Dry Forests in the Americas. Biol. Conserv. 2010, 143, 144–155. [Google Scholar] [CrossRef]
- Janzen, D.H. The Future of Tropical Ecology. For. Ecol. Manag. 1986, 17, 305–324. [Google Scholar] [CrossRef]
- Martínez-Garza, C.; González-Montagut, R. Seed Rain from Forest Fragments into Tropical Pastures in Los Tuxtlas, Mexico. Plant Ecol. 1999, 145, 255–265. [Google Scholar] [CrossRef]
- Burrough, P.A. GIS and Geostatistics: Essential Partners for Spatial Analysis. Environ. Ecol. Stat. 2001, 8, 361–377. [Google Scholar] [CrossRef]
- Quesada, M.; Sanchez-Azofeifa, G.A.; Alvarez-Añorve, M.; Stoner, K.E.; Avila-Cabadilla, L.; Calvo-Alvarado, J.; Castillo, A.; Espírito-Santo, M.M.; Fagundes, M.; Fernandes, G.W.; et al. Succession and Management of Tropical Dry Forests in the Americas: Review and New Perspectives. For. Ecol. Manag. 2009, 258, 1014–1024. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Guzmán-Quesada, J.A.; Vega-Araya, M.; Campos-Vargas, C.; Durán, S.M.; D’Souza, N.; Gianoli, T.; Portillo-Quintero, C.; Sharp, I. Can Terrestrial Laser Scanners (TLSs) and Hemispherical Photographs Predict Tropical Dry Forest Succession with Liana Abundance? Biogeosciences 2017, 14, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Kalacska, M.; Sanchez-Azofeifa, G.A.; Calvo-Alvarado, J.C.; Quesada, M.; Rivard, B.; Janzen, D.H. Species Composition, Similarity and Diversity in Three Successional Stages of a Seasonally Dry Tropical Forest. For. Ecol. Manag. 2004, 200, 227–247. [Google Scholar] [CrossRef]
- Kalácska, M.; Calvo-Alvarado, J.C.; Sánchez-Azofeifa, G.A. Calibration and Assessment of Seasonal Changes in Leaf Area Index of a Tropical Dry Forest in Different Stages of Succession. Tree Physiol. 2005, 25, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Mora, J.P.; Sánchez-Azofeifa, G.A.; Kalacska, M.; Rivard, B.; Calvo-Alvarado, J.C.; Janzen, D.H. Secondary Forest Detection in a Neotropical Dry Forest Landscape Using Landsat 7 ETM+ and IKONOS Imagery. Biotropica 2005, 37, 497–507. [Google Scholar] [CrossRef]
- Kalacska, M.; Member, S.; Sanchez-Azofeifa, G.A.; Caelli, T.; Rivard, B.; Boerlage, B. Using Bayesian Networks. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1866–1873. [Google Scholar] [CrossRef]
- Laurance, W.F.; Lovejoy, T.E.; Vasconcelos, H.L.; Bruna, E.M.; Didham, R.K.; Stouffer, P.C.; Gascon, C.; Bierregaard, R.O.; Laurance, S.G.; Sampaio, E. Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. Ecosyst. Decay Amaz. Fragm. 2002, 16, 605–618. [Google Scholar] [CrossRef] [Green Version]
- Manu, S.; Peach, W.; Cresswell, W. The Effects of Edge, Fragment Size and Degree of Isolation on Avian Species Richness in Highly Fragmented Forest in West Africa. Ibis 2007, 149, 287–297. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Sánchez-Azofeifa, A.; Espírito-Santo, M.M. Edge Influence on Canopy Openness and Understory Microclimate in Two Neotropical Dry Forest Fragments. In Tropical Dry Forests in the Americas; Sanchez-Azofeifa, A., Powers, J.S., Fernandes, G.W., Quesada, M., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 157–172. [Google Scholar]
- Castillo-Núñez, M.; Sánchez-Azofeifa, G.A.; Croitoru, A.; Rivard, B.; Calvo-Alvarado, J.; Dubayah, R.O. Delineation of Secondary Succession Mechanisms for Tropical Dry Forests Using LiDAR. Remote Sens. Environ. 2011, 115, 2217–2231. [Google Scholar] [CrossRef]
- Castillo, M.; Rivard, B.; Sánchez-Azofeifa, A.; Calvo-Alvarado, J.; Dubayah, R. LIDAR Remote Sensing for Secondary Tropical Dry Forest Identification. Remote Sens. Environ. 2012, 121, 132–143. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, S.; Sanchez-Azofeifa, G.A. Using LiDAR Waveform Metrics to Describe and Identify Successional Stages of Tropical Dry Forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 482–492. [Google Scholar] [CrossRef]
- Zhao, G.; Sanchez-Azofeifa, A.; Laakso, K.; Sun, C.; Fei, L. Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages. Remote Sens. 2021, 13, 3830. [Google Scholar] [CrossRef]
- Clark, M.L.; Clark, D.B.; Roberts, D.A. Small-Footprint Lidar Estimation of Sub-Canopy Elevation and Tree Height in a Tropical Rain Forest Landscape. Remote Sens. Environ. 2004, 91, 68–89. [Google Scholar] [CrossRef]
- Bagaram, M.B.; Giuliarelli, D.; Chirici, G.; Giannetti, F.; Barbati, A. UAV Remote Sensing for Biodiversity Monitoring: Are Forest Canopy Gaps Good Covariates? Remote Sens. 2018, 10, 1397. [Google Scholar] [CrossRef]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J. Remote Sensing of Environment Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; Weishampel, J.F.; Prince, S.D. Estimation of Tropical Forest Structural Characteristics Using Large-Footprint Lidar. Remote Sens. Environ. 2002, 79, 305–319. [Google Scholar] [CrossRef]
- Bottalico, F.; Chirici, G.; Giannini, R.; Mele, S.; Mura, M.; Puxeddu, M.; Mcroberts, R.E.; Valbuena, R.; Travaglini, D. Modeling Mediterranean Forest Structure Using Airborne Laser Scanning Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 145–153. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Hermosilla, T.; Mauro, F.; Godino, M. Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests 2014, 5, 936–951. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Peremarch, P.; Ángel, L.; Balaguer-Beser, Á.; Estornell, J.; Cartography, G.; Sensing, R.; Cgat, G.; De València, U.P.; De Vera, C. Analyzing the Role of Pulse Density and Voxelization Parameters on Full-Waveform LiDAR-Derived Metrics. ISPRS J. Photogramm. Remote Sens. 2018, 146, 453–464. [Google Scholar] [CrossRef]
- Leafsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar Remote Sensing for Ecosystem Studies. Bioscience 2002, 52, 19–30. [Google Scholar] [CrossRef]
- Crespo-Peremarch, P.; Fournier, R.A.; Nguyen, V.T.; van Lier, O.R.; Ruiz, L.Á. A Comparative Assessment of the Vertical Distribution of Forest Components Using Full-Waveform Airborne, Discrete Airborne and Discrete Terrestrial Laser Scanning Data. For. Ecol. Manag. 2020, 473, 118268. [Google Scholar] [CrossRef]
- Chaulagain, S.; Stone, M.C.; Dombroski, D.; Gillihan, T.; Chen, L.; Zhang, S. An Investigation into Remote Sensing Techniques and Field Observations to Model Hydraulic Roughness from Riparian Vegetation. River Res. Appl. 2022, 38, 1730–1745. [Google Scholar] [CrossRef]
- Muss, J.D.; Aguilar-Amuchastegui, N.; Mladenoff, D.J.; Henebry, G.M. Analysis of Waveform Lidar Data Using Shape-Based Metrics. IEEE Geosci. Remote Sens. Lett. 2013, 10, 106–110. [Google Scholar] [CrossRef]
- Li, W.; Cao, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Identifying Tropical Dry Forests Extent and Succession via the Use of Machine Learning Techniques. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 196–205. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Isenburg, M.; Liu, Y.; Shewchuk, J.; Snoeyink, J.; Thirion, T. Generating Raster DEM from Mass Points via TIN Streaming. In Geographic Information Science. GIScience 2006; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4197, pp. 186–198. [Google Scholar] [CrossRef] [Green Version]
- Isenburg, M.; Liu, Y.; Shewchuk, J.; Snoeyink, J. Streaming Computation of Delaunay Triangulations. ACM Trans. Graph. 2006, 25, 1049–1056. [Google Scholar] [CrossRef]
- Smith, P.R. Bilinear Interpolation of Digital Images. Ultramicroscopy 1981, 6, 201–204. [Google Scholar] [CrossRef]
- De Almeida, D.R.A.; Stark, S.C.; Shao, G.; Schietti, J.; Nelson, B.W.; Silva, C.A.; Gorgens, E.B.; Valbuena, R.; Papa, D.d.A.; Brancalion, P.H.S. Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sens. 2019, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Bréda, N.J.J. Ground-Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [Green Version]
- Vose, J.M.; Sullivan, N.H.; Clinton, B.D.; Bolstad, P.V. Vertical Leaf Area Distribution, Light Transmittance, and Application of the Beer-Lambert Law in Four Mature Hardwood Stands in the Southern Appalachians. Can. J. For. Res. 1995, 25, 1036–1043. [Google Scholar] [CrossRef]
- Martens, S.N.; Ustin, S.L.; Rousseau, R.A. Estimation of Tree Canopy Leaf Area Index by Gap Fraction Analysis. For. Ecol. Manag. 1993, 61, 91–108. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, S.; Sánchez-Azofeifa, G.A.; Durán, S.M.; Do Espírito-Santo, M.M.; Nunes, Y.R.F. Dynamics of Carbon Accumulation in Tropical Dry Forests under Climate Change Extremes. Forests 2021, 12, 106. [Google Scholar] [CrossRef]
- Schnitzer, S.A. A Mechanistic Explanation for Global Patterns of Liana Abundance and Distribution. Am. Nat. 2005, 166, 262–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingwell, L.L.; Joseph Wright, S.; Becklund, K.K.; Hubbell, S.P.; Schnitzer, S.A. The Impact of Lianas on 10 Years of Tree Growth and Mortality on Barro Colorado Island, Panama. J. Ecol. 2010, 98, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ronderos, M.E.; Bohrer, G.; Sanchez-Azofeifa, A.; Powers, J.S.; Schnitzer, S.A. Contribution of Lianas to Plant Area Index and Canopy Structure in a Panamanian Forest. Ecology 2016, 97, 3271–3277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.; Sánchez-Azofeifa, G.A. Extraction of Liana Stems Using Geometric Features from Terrestrial Laser Scanning Point Clouds. Remote Sens. 2022, 18, 4039. [Google Scholar] [CrossRef]
- Paul, G.S.; Yavitt, J.B. Tropical Vine Growth and the Effects on Forest Succession: A Review of the Ecology and Management of Tropical Climbing Plants. Bot. Rev. 2011, 77, 11–30. [Google Scholar] [CrossRef]
- Cao, S.; Sanchez-Azofeifa, G.A.; Duran, S.M.; Calvo-Rodriguez, S. Estimation of Aboveground Net Primary Productivity in Secondary Tropical Dry Forests Using the Carnegie-Ames-Stanford Approach (CASA) Model. Environ. Res. Lett. 2016, 11, 075004. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; Van Der Heijden, G.; Mascaro, J.; Carson, W.P. Lianas in Gaps Reduce Carbon Accumulation in a Tropical Forest. Ecology 2014, 95, 3008–3017. [Google Scholar] [CrossRef]
Parameters | Data | |
---|---|---|
Average flight height over the field (H) | 500 m | |
Piper PA-23-250 Azteca D aircraft | Flight speed | 158 km/h |
Scanning frequency | 266,000 points/s | |
Field Pixel Size (GSD) | 6.0 cm | |
Width of stripes | 488 m | |
DigiCAM H5D-50 | FOV | 60° |
Longitudinal overlaps | 60% | |
Transverse overlaps | 50% | |
RIEGL LMS-Q680i | Average density | 36 points/m2 |
Type | Metrics | Description |
---|---|---|
Point-based | Px | x coordinate of the maximum waveform amplitude |
EC | The total bin number of the effective waveform | |
RH50 | Height at which 50% of the waveform energy occurs | |
Area-based | AH1e10 | Total waveform amplitude where the relative height is less than 10 m |
AH1015 | Total waveform amplitude where the relative height is between 10 and 15 m | |
AH1520 | Total waveform amplitude where the relative height is between 15 and 20 m | |
Shape-based | Cx | The x coordinate of the waveform centroid |
Cy | The y coordinate of the waveform centroid | |
RG | The radius of gyration |
Successional Stages | Mean Height (m) | Tree Individuals per Stage |
---|---|---|
Early | 6.07 ± 1.91 | 1545 |
Transition I: Early to Intermediate | 9.42 ± 2.84 | 3546 |
Intermediate | 12.68 ± 2.98 | 22,470 |
Transition II: Intermediate to Late | 14.09 ± 3.17 | 23,815 |
Late | 16.28 ± 3.70 | 29,124 |
ANOVA | 8329.7 * | N/A |
Metrics | Intermediate | Transition II | Late | ANOVA |
---|---|---|---|---|
Cx | 0.31 ± 0.03 | 0.28 ± 0.03 | 0.25 ± 0.04 | 6.87 * |
Cy | 8.69 ± 0.87 | 10.30 ± 1.75 | 13.00 ± 1.78 | 17.64 * |
RG | 5.13 ± 0.43 | 5.96 ± 1.01 | 7.52 ± 1.02 | 17.55 * |
Px | 0.73 ± 0.14 | 0.75 ± 0.22 | 0.78 ± 0.15 | 0.09 |
Py | 2.31 ± 3.38 | 1.25 ± 0.43 | 1.41 ± 0.79 | 0.72 |
Hmax | 17.47 ±1.50 | 20.36 ± 3.49 | 25.75 ± 3.54 | 17.61 * |
LAI | 10.79 ± 1.34 | 11.47 ± 1.23 | 12.61 ± 0.83 | 5.71 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Bax, C.; Laakso, K.; Mashhadi, N.; Mattie, N.; Sanchez-Azofeifa, A. Characterizing Transitions between Successional Stages in a Tropical Dry Forest Using LiDAR Techniques. Remote Sens. 2023, 15, 479. https://doi.org/10.3390/rs15020479
Duan M, Bax C, Laakso K, Mashhadi N, Mattie N, Sanchez-Azofeifa A. Characterizing Transitions between Successional Stages in a Tropical Dry Forest Using LiDAR Techniques. Remote Sensing. 2023; 15(2):479. https://doi.org/10.3390/rs15020479
Chicago/Turabian StyleDuan, Menglei, Connor Bax, Kati Laakso, Nooshin Mashhadi, Nelson Mattie, and Arturo Sanchez-Azofeifa. 2023. "Characterizing Transitions between Successional Stages in a Tropical Dry Forest Using LiDAR Techniques" Remote Sensing 15, no. 2: 479. https://doi.org/10.3390/rs15020479
APA StyleDuan, M., Bax, C., Laakso, K., Mashhadi, N., Mattie, N., & Sanchez-Azofeifa, A. (2023). Characterizing Transitions between Successional Stages in a Tropical Dry Forest Using LiDAR Techniques. Remote Sensing, 15(2), 479. https://doi.org/10.3390/rs15020479