Observations of Archaeological Proxies through Phenological Analysis over the Megafort of Csanádpalota-Juhász T. tanya in Hungary Using Sentinel-2 Images
Abstract
:1. Introduction
2. Case Study
3. Methodology
3.1. Satellite Image Processing
3.2. Analysis of Phenological Profiles
4. Results
4.1. Sentinel-2 Image Processing
4.2. Phenological Observations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Parcak, S.H. Satellite Remote Sensing for Archaeology; Routledge Taylor and Francis Group Press: London, UK, 2009; p. 320. [Google Scholar]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.D. Evaluation of Broadband and Narrowband Vegetation Indices for the Identification of Archaeological Crop Marks. Remote Sens. 2012, 4, 3892–3919. [Google Scholar] [CrossRef] [Green Version]
- Abate, N.; Aromando, A.; Lasaponara, R. Old Methods and New Technologies: A Multidisciplinary Approach to Archaeological Research in Sant’Arsenio (Salerno, Italy). In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July 2019; Volume 11622. [Google Scholar] [CrossRef]
- Abate, N.; Elfadaly, A.; Masini, N.; Lasaponara, R. Multitemporal 2016–2018 Sentinel-2 Data Enhancement for Landscape Archaeology: The Case Study of the Foggia Province, Southern Italy. Remote Sens. 2020, 12, 1309. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Hadjimitsis, D.G. Vegetation indices and field spectro-radiometric measurements for validation of buried architectural remains: Verification under area surveyed with geophysical campaigns. J. Appl. Remote Sens. 2011, 5, 05355. [Google Scholar] [CrossRef]
- Agapiou, A.; Hadjimitsis, D.G.; Alexakis, D.; Sarris, A. Observatory validation of Neolithic tells (“Magoules”) in the Thessalian plain, central Greece, using hyperspectral spectroradiometric data. J. Archaeol. Sci. 2012, 39, 1499–1512. [Google Scholar] [CrossRef]
- Calleja, J.F.; Requejo Pagés, O.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Cebada Relea, A.; Rubio Melendi, D.; Fernández Álvarez, P. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Evaluating the Potentials of Sentinel-2 for Archaeological Perspective. Remote Sens. 2014, 6, 2176–2194. [Google Scholar] [CrossRef] [Green Version]
- Berganzo-Besga, I.; Orengo, H.A.; Lumbreras, F.; Carrero-Pazos, M.; Fonte, J.; Vilas-Estévez, B. Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia. Remote Sens. 2021, 13, 4181. [Google Scholar] [CrossRef]
- Agapiou, A.; Lysandrou, V. Remote Sensing Archaeology: Tracking and mapping evolution in scientific literature from 1999–2015. J. Archaeol. Sci. Rep. 2015, 4, 192–200. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F.; et al. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth 2017, 10, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Shi, P.; Bachagha, N.; Li, L.; Yao, Y.; Masini, N.; Chen, F.; et al. Google earth as a powerful tool for archaeological and cultural heritage applications: A review. Remote Sens. 2018, 10, 1558. [Google Scholar] [CrossRef]
- Miklós, Z. Légi Régészeti Kutatások 2003-ban—Aerial Archaeological Investigations in 2003; Régészeti Ku-tatások Magyarországon 2003—Archaeological Investigations in Hungary 2003; KÖH: Budapest, Hungary, 2004; pp. 127–145. [Google Scholar]
- Miklós, Z. Légi Régészeti Kutatások 2004-ben—Aerial Archaeological Investigations in 2004; Régészeti Ku-tatások Magyarországon 2004—Archaeological Investigations in Hungary 2004; KÖH: Budapest, Hungary, 2005; pp. 143–157. [Google Scholar]
- Miklós, Z. Légi Régészeti Kutatások 2005-ben—Aerial Archaeological Investigations in 2005; Régészeti Ku-tatások Magyarországon 2005—Archaeological Investigations in Hungary 2005; KÖH: Budapest, Hungary, 2006; pp. 161–170. [Google Scholar]
- Miklós, Z. Légi Régészeti Kutatások 2006-ban—Aerial Archaeological Investigations in 2006; RégészetiKutatások Magyarországon 2006—Archaeological Investigations in Hungary 2006; KÖH: Budapest, Hungary, 2007; pp. 37–146. [Google Scholar]
- Czajlik, Z. Légirégészeti Kutatások Magyarországon 2003-ban (Rövid Beszámoló az ELTE Régészettu-Dományi Intézetének Térinformatikai Kutató Laboratóriumában Folyó Munkáról)—Aerial Archaeological Investigations in Hungary in 2003 (A Short Report on the Work Done in the GIS Research Laboratory of the Institute of Archaeological Sciences, Eötvös Loránd University); Régészeti Kutatások Magyarországon 2003—Archaeological Investigations in Hungary 2003; KÖH: Budapest, Hungary, 2004; pp. 111–125. [Google Scholar]
- Czajlik, Z. Aerial archaeological prospection and documentation. The aerial archaeological archive of the Institute of Archaeological Sciences of the Eötvös Loránd University of Budapest (Summary of the activity in 1993–2005). Archeometriai Műhely 2007, 3, 1–10. [Google Scholar]
- Czajlik, Z. Aerial archaeology in the research of burial tumuli. Commun. Archaeol. Hung. 2008, 2008, 95–107. [Google Scholar]
- Asandulesei, A. Oblique air photography for chalcolithic sites from eastern Romania. Analysis and interpretation. Some examples. Stud. Antiq. Archaeol. 2014, 20, 69–89. [Google Scholar]
- Asăndulesei, A. GIS, Fotogrametrie și Geofizică în Arheologie. Investigații Non-Invazive în Așezări Cucuteni din România; Editura Universității “‘Alexandru Ioan Cuza’” din Iași: Iași, Romania, 2019. [Google Scholar]
- Ștefan, D.; Ștefan, M.-M. The drones are coming. What to choose? Low or Medium altitude aerial arcaheology on Limes Transalutanus. J. Anc. Hist. Archaeol. 2016, 3, 161–185. [Google Scholar] [CrossRef]
- Teodor, E.; Pețan, A.; Hegyi, A. A “new” Roman Temporary Camp in Parâng Mountains. Cercet. Arheol. 2018, XXV, 77–90. [Google Scholar] [CrossRef]
- Teodor, E.; Pețan, A.; Hegyi, A. Comments on the morphology of the hillfort from Muncel. ArheoVest, VI. In Memoriam Marian Gumă; Universitatea de Vest din Timișoara: Timișoara, Romania, 2018; pp. 683–706. [Google Scholar]
- Cociș, H. Surface and Low altitude surveys on the military vici from Sălaj county (Dacia Porolissensis). An. Banat. S.N Arheol.-Istor. 2018, XXVI, 35–52. [Google Scholar]
- Hegyi, A. Aplicarea Metodelor Specifice Geoștiințelor in Cercetări Arheologice din Sud-Vestul României (Teză Doctorat); Universitatea de Vest din Timișoara: Timișoara, Romania, 2018. [Google Scholar]
- Hegyi, A.; Sarris, A.; Curta, F.; Floca, C.; Fortiu, S.; Urdea, P.; Onaca, A.; Timofte, F.; Pisz, M.; Timut, S.; et al. Deserted medieval village reconstruction using applied geosciences. Remote Sens. 2020, 12, 1975. [Google Scholar] [CrossRef]
- Hegyi, A.; Urdea, P.; Floca, C.; Ardelean, A.; Onaca, A. Mapping the subsurface structures of a lost medieval village in South-Western Romania by combining conventional geophysical methods. Archaeol. Prospect. 2019, 26, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Țentea, O.; Matei-Popescu, F.; Călina, V. Frontiera romană din Dacia Inferior. O trecere în revistă și o actualizare. 1. Cercet. Arheol. 2021, 28, 9–90. [Google Scholar] [CrossRef]
- Pisz, M.; Tomas, A.; Hegyi, A. Non-destructive research in the surroundings of the Roman Fort Tibiscum (today Romania). Archaeol. Prospect. 2020, 27, 219–238. [Google Scholar] [CrossRef]
- Stavilă, A.; Hegyi, A.; Craiovan, B. Non-invasive archaeological research performed in the Middle Bronze Age settlement from Alioș-Valea Alioşu (Timiș County, Romania). Structures, chronology, and perspectives. Ziridava Stud. Arcaheologica 2020, 34, 168–188. [Google Scholar]
- Floca, C.; Gogâltan, F.; Hegyi, A.; Chiroiu, P.; Forțiu, S. Using the water power in preindustrial Banat. A historical archaeology study on the Lower Timiș River, Ziridava. Ziridava Stud. Archaeol. 2021, 35, 371–418. [Google Scholar]
- Harding, A. Corneşti-Iarcuri and the rise of mega-forts in Bronze Age Europe. In Proceedings of the Fortifications: The Rise and Fall of Defended Sites in Late Bronze and Early Iron Age of South-East Europe, Timişoara, Romania, 11–13 November 2015; pp. 9–14. [Google Scholar]
- Micle, D.; Măruia, L.; Dorogostaisky, L. The earth works from Cornești—”Iarcuri” (Orțișoara Village, Timiș County) in the light of recent field research. An. Banat. SN 2006, XIV, 283–306. [Google Scholar]
- Micle, D.; Török-Oance, M.; Măruia, L. The morpho-topographic and cartographic analysis using GIS and Remote Sensing techniques of the archaeological site Cornesti “Iarcuri”, Timis County, Romania. In Proceedings of the Advances on Remote Sensing for Archaeology and Cultural Heritage Management, Proceedings of the 1st International EARSeL Workshop CNR, Rome, Italy, 30 September–4 October 2008; pp. 387–393. [Google Scholar]
- Heeb, B.S.; Szentmiklosi, A.; Wiecken, J.M. Zu den wallringen von Corneşti-Iarcuri, Jud. Timiş, Rumänien—Forschungsgeschichte und neueste untersuchungen. Prahistorische Z. 2008, 83, 179–188. [Google Scholar] [CrossRef]
- Heeb, B.; Teinz, K.; Bälärie, A.; Szentmiklosi, A.; Lehmphul, R. Zum Fund eines Schuhgefäßfragments in Corneşti-Iarcuri. Mitt. Der Berl. Ges. Fur Anthropol. Ethnol. Und Urgesch. 2018, 39, 51–54. [Google Scholar]
- Nykamp, M.; Hoelzmann, P.; Heeb, B.S.; Szentmiklosi, A.; Schütt, B. Holocene sediment dynamics in the environs of the fortification enclosure of Corneşti-Iarcuri in the Romanian Banat. Quat. Int. 2016, 415, 190–203. [Google Scholar] [CrossRef]
- Nykamp, M.; Knitter, D.; Timár, G.; Krause, J.; Heeb, B.S.; Szentmiklosi, A.; Schütt, B. Estimation of wind-driven soil erosion of a loess-like sediment and its implications for the occurrence of archaeological surface and subsurface finds—An example from the environs of Corneşti-Iarcuri, western Romania. J. Archaeol. Sci. Rep. 2017, 12, 601–612. [Google Scholar] [CrossRef]
- Szentmiklosi, A.; Heeb, B.S.; Heeb, J.; Harding, A.; Krause, R.; Becker, H. Corneşti-Iarcuri—A Bronze Age town in the Romanian Banat? Antiquity 2011, 85, 819–838. [Google Scholar] [CrossRef] [Green Version]
- Gogâltan, F.; Sava, V. Sântana Cetatea Veche—A Bronze Age earthwork on the lower Mureş; Bronze Age: Arad, Israel, 2010; 99p. [Google Scholar]
- Gogâltan, F.; Sava, V. A violent end. An attack with clay sling projectiles against the late bronze age fortification in Sântana. In Ronzezeitliche Burgen Zwischen Taunus und Karpaten/Bronze Age Hillforts between Taunus and Carpathian Mountains; Hansen, S., Krause, R., Eds.; Verlag Dr. Rudolf Habelt GmbH: Frankfurt am Main, Germany, 2018; pp. 349–369. [Google Scholar]
- Agapiou, A.; Hegyi, A.; Gogâltan, F.; Stavilă, A.; Sava, V.; Sarris, A.; Floca, C.; Dorogostaisky, L. Medium Resolution Multispectral Satellite Images for Archaeological Prospection: Exploring the Largest Known Bronze Age Earthworks in Europe. Int. J. Appl. Earth Obs. Geoinf. 2022, in press. [Google Scholar]
- Molloy, B.; Jovanović, D.; Bruyère, C.; Marić, M.; Bulatović, J.; Mertl, P.; Horn, C.; Milašinović, L.; Mirković-Marić, N. A New Bronze Age Mega-fort in Southeastern Europe: Recent Archaeological Investigations at Gradište Iđoš and their Regional Significance. J. Field Archaeol. 2020, 45, 293–314. [Google Scholar] [CrossRef]
- Milo, P.; Lichtenstein, L.; Rózsa, Z.; Tencer, T.; Fekete et Marek Vlach, Z. Geophysical Survey at archaeological site Kaszaper, Békés County, Hungary. ArchéoSciences 2009, 33, 115–116. [Google Scholar] [CrossRef] [Green Version]
- Czukor, P.; Priskin, A.; Szalontai, C.; Szeverényi, V. Késő bronzkori földvárak a Dél-Alföldön. In A második Hajdúböszörményi Szitula és Kapcsolatrendszere; Szabó, G.V., Bálint, M., Váczi, G., Lőrinczy, G., Eds.; Régészettudományi Intézet: Budapest, Hungary, 2017; pp. 211–230. [Google Scholar]
- Czukor, P.; Priskin, A.; Szalontai, C.; Szeverényi, V. Csanádpalota, Földvár (KÖH 86463) (Csongrád megye) B, Á, Ú. Régészeti Kut Magy. 2013, 30–31. Available online: https://archeodatabase.hnm.hu/hu/download/15368/file/189661c3-2fce-4a49-80d3-7f3e511dd928?type=pdf (accessed on 25 November 2022).
- Priskin, A.; Czukor, P.; Szalontai, C.; Szeverényi, V. Research into the structure of Late Bronze Age settlements in the southern Great Hungarian Plain: “Enclosed Space—Open Borders” Project. Hung Archaeol. e-J. 2013, 1–6. Available online: https://www.academia.edu/5119466/Research_into_the_Structure_of_Late_Bronze_Age_Settlements_in_the_Southern_Great_Hungarian_Plain (accessed on 25 November 2022).
- Szeverényi, V.; Priskin, A.; Czukor, P.; Torma, A.; Tóth, A. Élelmiszer-termelés, település és társadalom a késő bronzkorban Délkelet-Magyarorszá-gon: Esettanulmány Csanádpalota-Földvár erődített település alapján. MóraFerenc Múzeum Évkönyve 2015, 2, 41–66. [Google Scholar]
- Szalontai, C.; Priskin, A.; Czukor, P.; Szeverényi, V. Őskori Tájhasználat a Délkelet-Alföldön Néhány Késő Bronzkori Földvár Alapján. VII; Magyar Tájökológiai Koferencia Iterdiszipliáris tájkutatás a XXI; Százada: Szeged, Hungary, 2017; pp. 565–573. [Google Scholar]
- Dorogostaisky, L.; Ardelean, A. Rezultatele cercetărilor de teren (2014) a patru mari așezări fortificate de la sfârșitul epocii bronzului din Câmpia de Vest: Biled–Șandra, Cenei, Sânnicolau Mare și Pecica. ArheoVest. In Honorem Gheorghe Lazarovici, Interdisciplinaritate în Arheologie; ArheoVest: Timișoara, Romania, 2014; Volume 6, pp. 323–347. [Google Scholar]
- Dorogostaisky, L.; Hegyi, A. Noi ipoteze de lucru pentru cercetarea epocii bronzului în Banat (II). Un posibil complex de fortificații și așezări în arealul localităților Variaș-Satchinez (jud. Timiș). ArheoVest. In Honorem Doina Benea; ArheoVest: Timișoara, Romania, 2017; Volume V, pp. 747–770. [Google Scholar]
- Lasaponara, R.; Abate, N.; Masini, N. On the Use of Google Earth Engine and Sentinel Data to Detect Lost Sections of Ancient Roads. The Case of Via Appia. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F. Appraisal of Opportunities and Perspectives for the Systematic Condition Assessment of Heritage Sites with Copernicus Sentinel-2 High-Resolution Multispectral Imagery. Remote Sens. 2018, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Lysandrou, V.; Lasaponara, R.; Masini, N.; Hadjimitsis, D.G. Study of the Variations of Archaeological Marks at Neolithic Site of Lucera, Italy Using High-Resolution Multispectral Datasets. Remote Sens. 2016, 8, 723. [Google Scholar] [CrossRef] [Green Version]
- Conesa, F.C.; Orengo, H.A.; Lobo, A.; Petrie, C.A. An Algorithm to Detect Endangered Cultural Heritage by Agricultural Expansion in Drylands at a Global Scale. Remote Sens. 2023, 15, 53. [Google Scholar] [CrossRef]
- Szeverényi, V.; Priskin, A.; Czukor, P. Csanádpalota-Juhász, T. tanya (M43 55. lh.) késő bronzkori erődített település feltárása: Előzetes jelentés a 2011–2013. Évi ásatások eredményeiről. A Móra Ferenc Múzeum Évkönyv 2014, 1, 35–60. [Google Scholar]
- Sava, V.; Gogâltan, F.; Krause, R. First steps in the dating of the bronze age mega-fort in Sântana-Cetatea Veche (Southwestern Romania). In Bronze Age Fortresses in Europe. Proceedings of the Second International LOEWE Conference, 9–13 October 2017, Alba Iulia, Romania; Hansen, S., Krause, R., Eds.; ACADEMIC: Bonn, Germany, 2019; pp. 161–176. [Google Scholar]
- Krause, R.; Szentmiklosi, A.; Heeb, B.; Lehmphul, R.; Teinz, K.; Bălărie, A.; Herbig, C.; Stobbe, A.; Schmid, J.; Schäffler, D.; et al. Cornești-Iarcuri. Die Ausgrabungen 2013 und 2014 in der befestigten Großsiedlung der späten Bronzezeit im rumänischen Banat. Eurasia Antiq. 2019, 22, 133–184. [Google Scholar]
- Congedo, L. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Agapiou, A. Orthogonal equations for the detection of archaeological traces de-mystified. J. Archaeol. Sci. Rep. 2016, 14, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Orthogonal re-projection of spectral bands using medium and high-resolution satellite images for the detection of archaeological crop marks. Remote Sens. 2013, 5, 6560. [Google Scholar] [CrossRef] [Green Version]
- Agapiou, A.; Alexakis, D.D.; Sarris, A.; Hadjimitsis, D.G. Linear 3-D transformations of Landsat 5 TM satellite images for the enhancement of archaeological signatures during the phenological of crops. Int. J. Remote Sens. 2015, 36, 20–35. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retrogradation (Greenwave Effect) of Nature Vegetation; NASA/GSFC Final Report; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Huete, A.R. A Soil Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Cerra, D.; Agapiou, A.; Cavalli, R.M.; Sarris, A. An objective assessment of hyperspectral indicators for the detection of buried archaeological relics. Remote Sens. 2018, 10, 500. [Google Scholar] [CrossRef]
- IDB: Index Database from the University of Bonn. Available online: www.indexdatabase.de (accessed on 25 November 2022).
- Agapiou, A. Enhancement of archaeological proxies at non-homogenous environments in Remotely Sensed Imagery. Sustainability 2019, 11, 3339. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.; Welham, K.; Hill, R.A.; Ford, A.L.J. The application of vegetation indices for the prospection of archaeological features in grass-dominated environments. Archaeol. Prospect. 2012, 19, 209–218. [Google Scholar] [CrossRef]
- Agapiou, A. Optimal spatial resolution for the detection and discrimination of archaeological proxies in areas with spectral heterogeneity. Remote Sens. 2020, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, M.; Klonus, S.; Åstrand, J.P.; Rosso, P. Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 2010, 1, 25–45. [Google Scholar] [CrossRef]
- McCloy, K.R. Development and evaluation of phenological change indices derived from time series of image data. Remote Sens. 2010, 2, 2442–2473. [Google Scholar] [CrossRef]
Vegetation Index Name | Veg. Index | Equation | Reference | Equation |
---|---|---|---|---|
Atmospheric Resistance Vegetation Index | ARVI | (pNIR − prb)/(pNIR + prb), prb = pred − γ (pblue − pred) | [67] | (1) |
Enhanced Vegetation Index | EVI | 2.5 (pNIR − pred)/(pNIR +6 pred − 7.5 pblue +1) | [68] | (2) |
Normalized Difference Vegetation Index | NDVI | (pNIR − pred)/(pNIR + pred) | [69] | (3) |
Soil Adjusted Vegetation Index | SAVI | (1 + L) × (pNIR − pred)/(pNIR + pred + L) | [70] | (4) |
Soil and Atmospherically Resistance Vegetation Index | SARVI | (1 + 0.5) (pNIR − prb)/(pNIR + prb + 0.5) prb = pred − γ (pblue − pred) | [71] | (5) |
Tasseled Cap—Greenness | TCG | −0.28482 × B02 − 0.24353 × B03 − 0.54364 × B04 + 0.72438 × B08 + 0.084011 × B11 − 0.180012 × B12, | [72] | (6) |
Area 1 | Area 2 | Area 3 | Area 4 | |
---|---|---|---|---|
Area 1 | 0.72 | 0.89 | 0.79 | |
Area 2 | 0.69 | 0.62 | ||
Area 3 | 0.78 | |||
Area 4 |
Area 1 | Area 2 | Area 3 | Area 4 | |
---|---|---|---|---|
Area 1 | 0.44 | 0.87 | 0.52 | |
Area 2 | 0.44 | 0.46 | 0.23 | |
Area 3 | 0.87 | 0.46 | 0.54 | |
Area 4 | 0.52 | 0.23 | 0.54 |
Area 1 | Area 2 | Area 3 | Area 4 | |
---|---|---|---|---|
Area 1 | 0.44 | 0.88 | 0.52 | |
Area 2 | 0.46 | 0.23 | ||
Area 3 | 0.54 | |||
Area 4 |
Area 1 | Area 2 | Area 3 | Area 4 | |
---|---|---|---|---|
Area 1 | 0.72 | 0.89 | 0.79 | |
Area 2 | 0.69 | 0.62 | ||
Area 3 | 0.77 | |||
Area 4 |
Area 1 | Area 2 | Area 3 | Area 4 | |
---|---|---|---|---|
Area 1 | 0.53 | 0.90 | 0.70 | |
Area 2 | 0.47 | 0.34 | ||
Area 3 | 0.70 | |||
Area 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agapiou, A.; Hegyi, A.; Stavilă, A. Observations of Archaeological Proxies through Phenological Analysis over the Megafort of Csanádpalota-Juhász T. tanya in Hungary Using Sentinel-2 Images. Remote Sens. 2023, 15, 464. https://doi.org/10.3390/rs15020464
Agapiou A, Hegyi A, Stavilă A. Observations of Archaeological Proxies through Phenological Analysis over the Megafort of Csanádpalota-Juhász T. tanya in Hungary Using Sentinel-2 Images. Remote Sensing. 2023; 15(2):464. https://doi.org/10.3390/rs15020464
Chicago/Turabian StyleAgapiou, Athos, Alexandru Hegyi, and Andrei Stavilă. 2023. "Observations of Archaeological Proxies through Phenological Analysis over the Megafort of Csanádpalota-Juhász T. tanya in Hungary Using Sentinel-2 Images" Remote Sensing 15, no. 2: 464. https://doi.org/10.3390/rs15020464
APA StyleAgapiou, A., Hegyi, A., & Stavilă, A. (2023). Observations of Archaeological Proxies through Phenological Analysis over the Megafort of Csanádpalota-Juhász T. tanya in Hungary Using Sentinel-2 Images. Remote Sensing, 15(2), 464. https://doi.org/10.3390/rs15020464