Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR
Abstract
:1. Introduction
2. Modeling
2.1. Geometric Model
2.2. Wavefront Curvature Error Analysis
3. Imaging Approach
3.1. EPFA
3.2. Space Variance Phase Error Compensation
3.2.1. Phase Compensation Filter
3.2.2. Space-Variant Filter Implementation
- (1)
- Partition: The uncompensated EPFA image is divided into sub-images, which should guarantee that at the edge of the sub-image, the residual defocus can be neglected after filter implementation. and represent the numbers of sub-images in the range and azimuth dimensions, respectively.
- (2)
- Filter: A sub-image of the interpolated echo signal in (14) is obtained by windowing, which has a size of and centers on the pixel grid . According to the pixel , the space-variant error compensation factor in the azimuth wavenumber domain can be constructed as follows:
- The subblock data are carried out using the azimuth IFT and multiplied by the . The space-variant error is then eliminated in the azimuth wavenumber domain. Finally, the azimuth FT is used to yield the compensated focused image.
- (3)
- Joint: The previous steps are repeated for all the sub-images. Then the whole image can be created by splicing all the compensated output images of the subregions.
3.3. Computation Analyses
4. Simulation Results
4.1. Simulated Data Analyses
4.2. Real Data Experiments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- An, D.; Huang, X.; Jin, T.; Zhou, Z. Extended nonlinear chirp scaling algorithm for high-resolution highly squint SAR data focusing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3595–3609. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Hong, W. Structured Low-rank and Sparse Method for ISAR Imaging with 2D Compressive Sampling. IEEE Trans. Geosci. Remote Sens. 2022, in press.
- Xu, G.; Zhang, B.; Yu, H.; Chen, J.; Xing, M.; Hong, W. Sparse Synthetic Aperture Radar Imaging from Compressed Sensing and Machine Learning: Theories, Applications and Trends. IEEE Trans. Geosci. Remote Sens. 2022, in press.
- Xing, M.; Wu, Y.; Zhang, Y.D.; Sun, G.; Bao, Z. Azimuth resampling processing for highly squinted synthetic aperture radar imaging with several modes. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4339–4352. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Xia, L.; Zhang, L.; Guo, R.; Bao, Z. Focus improvement of high-squint SAR based on azimuth dependence of quadratic range cell migration correction. IEEE Geosci. Remote Sens. Lett. 2013, 10, 150–154. [Google Scholar] [CrossRef]
- Jin, M.Y.; Wu, C. A SAR correlation algorithm which accommodates large range migration. IEEE Trans. Geosci. Remote Sens. 1984, GRS-22, 592–597. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Cumming, I.G.; Bamler, R.; Wong, F.H. Precision of SAR processing using chirp scaling. IEEE Trans. 1994, 32, 786. [Google Scholar] [CrossRef]
- Davidson, G.W.; Cumming, I.G. Signal properties of spaceborne squint-mode SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Davidson, G.W.; Cumming, I.G.; Ito, M.R. A chirp scaling approach for processing squint mode SAR data. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 121–133. [Google Scholar] [CrossRef]
- Moreira, A.; Huang, Y. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1029–1040. [Google Scholar] [CrossRef]
- Moreira, A.; Mittermayer, J.; Scheiber, R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1123–1136. [Google Scholar] [CrossRef]
- Wong, F.H.; Yeo, T.S. New applications of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 946–953. [Google Scholar] [CrossRef]
- Yeo, T.S.; Tan, N.L.; Zhang, C.B.; Lu, Y.H. A new subaperture approach to high squint SAR processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 954–968. [Google Scholar]
- Zhu, D.Y.; Shen, M.W.; Zhu, Z.D. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1579–1588. [Google Scholar]
- Sun, G.; Xing, M.; Liu, Y.; Sun, L.; Bao, Z.; Wu, Y. Extended NCS Based on Method of Series Reversion for Imaging of Highly Squinted SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 446–450. [Google Scholar] [CrossRef]
- Sun, G.; Jiang, X.; Xing, M.; Qiao, Z.; Wu, Y.; Bao, Z. Focus Improvement of Highly Squinted Data Based on Azimuth Nonlinear Scaling. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2308–2322. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liang, Y.; Xing, M.; Zheng, B. New subaperture imaging algorithm and geometric correction method for high squint diving SAR based on equivalent squint model. J. Electron. Inf. Technol. 2015, 37, 1814–1820. [Google Scholar]
- Chen, J.; Kuang, H.; Yang, W.; Liu, W.; Wang, P. A novel imaging algorithm for focusing high-resolution spaceborne SAR data in squinted sliding-spotlight mode. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1577–1581. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Liang, Y.; Xing, M.; Huai, Y.; Li, Z. A novel motion compensation approach for airborne spotlight SAR of high-resolution and high-squint mode. IEEE Geosci. Remote Sens. Lett. 2016, 13, 429–433. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Xu, F.; Yang, J. A New Nonlinear Chirp Scaling Algorithm for High-Squint High-Resolution SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2225–2229. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, Y.; Chang, Y.; Liu, E.; Tang, X.; Zhang, J. Focus high-resolution highly squint SAR data using azimuth-variant residual RCMC and extended nonlinear chirp scaling based on a new circle model. IEEE Geosci. Remote Sens. Lett. 2018, 15, 547–551. [Google Scholar] [CrossRef]
- Munson, D.C.; Brien, J.O.; Jenkins, W.K. A tomographic formulation of spotlight-mode synthetic aperture radar. Proc. IEEE 1983, 71, 917–925. [Google Scholar] [CrossRef]
- Ulander, L.M.H.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, H.-L.; Qiao, Z.-J.; Xu, Z.-W. A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1460–1464. [Google Scholar] [CrossRef]
- Li, Z.; Xing, M.; Liang, Y.; Gao, Y.; Chen, J.; Huai, Y.; Zeng, L.; Sun, G.; Bao, Z. A Frequency-Domain Imaging Algorithm for Highly Squinted SAR Mounted on Maneuvering Platforms with Nonlinear Trajectory. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4023–4038. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, L.; Guo, P.; Zhao, Y. An omega-K algorithm for highly squinted missile-borne SAR with constant acceleration. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1569–1573. [Google Scholar] [CrossRef]
- Yang, J.; Sun, G.; Xing, M.; Xia, X.-G.; Liang, Y.; Bao, Z. Squinted TOPS SAR imaging based on modified range migration algorithm and spectral analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1707–1711. [Google Scholar] [CrossRef]
- Li, Z.; Xing, M.; Xing, W.; Liang, Y.; Gao, Y.; Dai, B.; Hu, L.; Bao, Z. A Modified Equivalent Range Model and Wavenumber-Domain Imaging Approach for High-Resolution-High-Squint SAR With Curved Trajectory. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3721–3734. [Google Scholar] [CrossRef]
- Walker, J.L. Range-Doppler imaging of rotating objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 23–51. [Google Scholar] [CrossRef]
- Tang, Y.; Xing, M.; Bao, Z. The polar format imaging algorithm based on double Chirp-Z transforms. IEEE Geosci. Remote Sens. Lett. 2008, 5, 610–614. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, J.; Xu, H.; Sun, B. A parameter-adjusting polar format algorithm for extremely high squint SAR imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 640–650. [Google Scholar] [CrossRef]
- Chen, J.; An, D.; Wang, W.; Luo, Y.; Chen, L.; Zhou, Z. Extended polar format algorithm for large-scene high-resolution WAS-SAR imaging. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 5326–5338. [Google Scholar] [CrossRef]
- Tang, S.; Deng, H.; Guo, P.; Li, Y.; Zhang, L. Generalzied PFA for air-missile borne bistatic forward-looking beam-steering SAR with accelerations. IEEE Access 2019, 1, 74616–74627. [Google Scholar]
- Gorham, L.A.; Rigling, B.D. Scene size limits for polar format algorithm. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 73–84. [Google Scholar] [CrossRef]
- Doren, N.E.; Jakowatz, C.V.; Wahl, D.E.; Thompson, P.A. General Formulation for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Images Using Space-Variant Post –Filtering. In Proceedings of the International Conference on Image Processing, Santa Barbara, CA, USA, 26–29 October 1997; pp. 861–864. [Google Scholar]
- Wang, X.; Zhu, D.; Mao, X.; Zhu, Z. Space-variant filtering for wavefront curvature correction in polar formatted bistatic SAR image. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 940–950. [Google Scholar] [CrossRef]
- Hu, R.; Li, X.; Yeo, T.S.; Yang, Y.; Chi, C.; Zuo, F.; Hu, X.; Pi, Y. Refocusing and zoom-in polar format algorithm for curvilinear spotlight SAR imaging on arbitrary region of interest. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7995–8010. [Google Scholar] [CrossRef]
- Hu, R.; Rao, B.S.M.R.; Alaee-Kerahroodi, M.; Ottersten, B. Orthorectified polar format algorithm for generalized spotlight SAR imaging with DEM. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3999–4007. [Google Scholar] [CrossRef]
- Mao, X.; Zhu, D.; Zhu, Z. Polar Format Algorithm Wavefront Curvature Compensation Under Arbitrary Radar Flight Path. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; pp. 1382–1385. [Google Scholar]
- Nie, X.; Lei, W.; Zhuang, L. A Two-Step Wide-Scene Polar Format Algorithm for High-Resolution Highly squinted SAR. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Deng, H.; Li, Y.; Liu, M.; Mei, H.; Quan, Y. A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track. IEEE Sensor J. 2018, 18, 3311–3326. [Google Scholar] [CrossRef]
- Miao, Y.; Wu, J.; Li, Z.; Yang, J. A Generalized Wavefront-Curvature-Corrected Polar Format Algorithm to Focus Bistatic SAR Under Complicated Flight Paths. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 3757–3771. [Google Scholar] [CrossRef]
- Jokowartz, C.V.; Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Thompson, P.A. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach; Kluwer: Norwell, MA, USA, 1996. [Google Scholar]
- Li, X.; Liu, G.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1240–1252. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Carrier Frequency | 9.65 GHz | Altitude | 7 km |
Pulse Bandwidth | 200 MHz | Slant range | 15 km |
Sampling Frequency | 300 MHz | Velocity | 100 m/s |
Scene size | 2 km × 2 km | Squint Angle | 60° |
Range | Azimuth | ||||||
---|---|---|---|---|---|---|---|
Method | Target | IRW (m) | PSLR (dB) | ISLR (dB) | IRW (m) | PSLR (dB) | ISLR (dB) |
EPFA | PT0 | 0.66 | −13.35 | −10.47 | 0.44 | −13.22 | −9.77 |
PT1 | 0.66 | −13.26 | −10.43 | 0.47 | −12.98 | −9.52 | |
PT2 | 0.67 | −13.27 | −10.44 | 0.45 | −13.13 | −9.8 | |
PT3 | 0.67 | −13.32 | −10.47 | 0.44 | −13.15 | −9.65 | |
CPFA | PT0 | 0.66 | −13.69 | −15.39 | 0.44 | −13.09 | −10.18 |
PT1 | 1.19 | −14.6 | −13.45 | 7.42 | −0.62 | −0.55 | |
PT2 | 1.06 | −13.98 | −13.99 | 3.90 | −1.36 | −1.49 | |
PT3 | 0.99 | −14.65 | −14.03 | 3.47 | −1.12 | −1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Wu, F.; Wang, A. Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR. Remote Sens. 2023, 15, 456. https://doi.org/10.3390/rs15020456
Guo P, Wu F, Wang A. Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR. Remote Sensing. 2023; 15(2):456. https://doi.org/10.3390/rs15020456
Chicago/Turabian StyleGuo, Ping, Fuen Wu, and Anyi Wang. 2023. "Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR" Remote Sensing 15, no. 2: 456. https://doi.org/10.3390/rs15020456
APA StyleGuo, P., Wu, F., & Wang, A. (2023). Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR. Remote Sensing, 15(2), 456. https://doi.org/10.3390/rs15020456