Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methodology
2.3.1. Remote Sensing Ecological Index
2.3.2. Ecological Resilience
- (1)
- Ecological sensitivity
- (2)
- Ecological adaptability
2.3.3. Structural Equation Model
3. Results
3.1. PCA Results of RSEI Indicators
3.2. Spatial and Temporal Changes of RSEI
3.3. Spatial Pattern of Ecological Resilience
3.4. Driving Factors of Ecological Resilience
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, S.; Feng, K. Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province. Appl. Energy 2019, 254, 113650. [Google Scholar] [CrossRef]
- Lin, Q.; Yu, S. Losses of natural coastal wetlands by land conversion and ecological degradation in the urbanizing Chinese coast. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.A.; Canh, N.P.; Le, T.N.L. Environmental degradation & role of financialisation, economic development, industrialisation and trade liberalisation. J. Environ. Manag. 2021, 277, 111471. [Google Scholar] [CrossRef]
- Ozcan, B.; Tzeremes, P.G.; Tzeremes, N.G. Energy consumption, economic growth and environmental degradation in OECD countries. Econ. Model 2020, 84, 203–213. [Google Scholar] [CrossRef]
- Cunsolo, A.; Ellis, N.R. Ecological grief as a mental health response to climate change-related loss. Nat. Clim. Chang. 2018, 8, 275–281. [Google Scholar] [CrossRef]
- An, M.; Xie, P.; He, W.; Wang, B.; Huang, J.; Khanal, R. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Venkatakrishnan, P.; Balaji, N. Intelligent based novel embedded system based IoT enabled air pollution monitoring system. Microprocess. Microsy. 2020, 77, 103172. [Google Scholar] [CrossRef]
- Hosseini, H.; Shakeri, A.; Rezaei, M.; Dashti Barmaki, M.; Shahraki, M. Application of water quality index (WQI) and hydro-geochemistry for surface water quality assessment, chahnimeh reservoirs in the Sistan and Baluchestan province. Iran. J. Environ. Health 2019, 11, 575–586. [Google Scholar]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Peng, T.; Deng, H. Evaluating urban resource and environment carrying capacity by using an innovative indicator system based on eco-civilization—A case study of Guiyang. Environ. Sci. Pollut. Res. 2021, 28, 6941–6955. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Huang, J.; Zhou, H.; Fang, C.; Zhan, Y.; Huang, W. Local and telecoupling coordination degree model of urbanization and the eco-environment based on RS and GIS: A case study in the Wuhan urban agglomeration. Sustain. Cities Soc. 2021, 75, 103405. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; He, S.; Niu, R. Eco-environmental assessment model of the mining area in Gongyi, China. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Kurniawan, R.; Saputra, A.M.W.; Wijayanto, A.W.; Caesarendra, W. Eco-environment vulnerability assessment using remote sensing approach in East Kalimantan, Indonesia. Remote Sens. Appl. 2022, 27, 100791. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Q.; Shao, Y.; Sun, S.; Xiao, L.; Guo, J. Ecological environment assessment based on land use simulation: A case study in the Heihe River Basin. Sci. Total Environ. 2019, 697, 133928. [Google Scholar] [CrossRef]
- Liao, W.; Jiang, W. Evaluation of the spatiotemporal variations in the eco-environmental quality in China based on the remote sensing ecological index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Borgogno Mondino, E. Geomatics and EO data to support wildlife diseases assessment at landscape level: A pilot experience to map infectious keratoconjunctivitis in chamois and phenological trends in Aosta Valley (NW Italy). Remote Sens. Appl. 2020, 12, 3542. [Google Scholar] [CrossRef]
- Deliry, S.I.; Pekkan, E.; Avdan, U. GIS-Based Water Budget Estimation of the Kizilirmak River Basin using GLDAS-2.1 Noah and CLSM Models and Remote Sensing Observations. J. Indian Soc. Remote Sens. 2022, 50, 1191–1209. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, S.; Zhang, Q.; Liu, Y.; Zhou, H. Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sens. Appl. 2022, 14, 832. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Sharifi, A.; Schlör, H. Integrated social-ecological-infrastructural management for urban resilience. Resour. Conserv. Recycl. 2022, 181, 106268. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Dentoni, D.; Pinkse, J.; Lubberink, R. Linking sustainable business models to socio-ecological resilience through cross-sector partnerships: A complex adaptive systems view. Bus. Soc. 2021, 60, 1216–1252. [Google Scholar] [CrossRef]
- Komugabe-Dixson, A.F.; de Ville, N.S.; Trundle, A.; McEvoy, D. Environmental change, urbanisation, and socio-ecological resilience in the Pacific: Community narratives from Port Vila, Vanuatu. Ecosyst. Serv. 2019, 39, 100973. [Google Scholar] [CrossRef]
- Carr, E.R. Properties and projects: Reconciling resilience and transformation for adaptation and development. World Dev. 2019, 122, 70–84. [Google Scholar] [CrossRef]
- Goldbeck, N.; Angeloudis, P.; Ochieng, W.Y. Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models. Reliab. Eng. Syst. Saf. 2019, 188, 62–79. [Google Scholar] [CrossRef]
- Moslehi, S.; Reddy, T.A. Sustainability of integrated energy systems: A performance-based resilience assessment methodology. Appl. Energy 2018, 228, 487–498. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Xu, X.; Luo, J. Integrated Natural Disasters Urban Resilience Evaluation: The Case of China. Nat. Hazards 2021, 107, 2105–2122. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Lin, J.; Xie, J.; Su, K. The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. J. Geogr. Sci. 2022, 32, 44–64. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, L.; Zhang, S.; Liang, K. Estimation on wetland loss and its restoration potential in Modern Yellow River Delta, Shandong Province of China. Chinese Chin. J. Popul. Resour. 2015, 13, 365–372. [Google Scholar] [CrossRef]
- Côté, I.M.; Darling, E.S. Rethinking Ecosystem Resilience in the Face of Climate Change. PLoS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef]
- Xiao, W.; Lv, X.; Zhao, Y.; Sun, H.; Li, J. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 2020, 109, 105843. [Google Scholar] [CrossRef]
- Thiault, L.; Marshall, P.; Gelcich, S.; Collin, A.; Chlous, F.; Claudet, J. Mapping social–ecological vulnerability to inform local decision making. Conserv. Biol. 2018, 32, 447–456. [Google Scholar] [CrossRef]
- Lazzari, N.; Becerro, M.A.; Sanabria-Fernandez, J.A.; Martín-López, B. Assessing social-ecological vulnerability of coastal systems to fishing and tourism. Sci. Total Environ. 2021, 784, 147078. [Google Scholar] [CrossRef]
- Brand, F. Critical natural capital revisited: Ecological resilience and sustainable development. Ecol. Econ. 2009, 68, 605–612. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, X.; Wu, H.; Li, Z. Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China. Land 2022, 11, 921. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H. Structural Equation Modeling. In Models and Methods for Management Science; Management for Professionals; Zhang, H., Ed.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Liu, S.C.; Peng, F.L.; Qiao, Y.K.; Zhang, J.B. Evaluating disaster prevention benefits of underground space from the perspective of urban resilience. Int. J. Disaster Risk Reduct. 2021, 58, 102206. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. Res. 2021, 28, 6898–6912. [Google Scholar] [CrossRef]
- Li, D.; Yang, W.; Huang, R. The multidimensional differences and driving forces of ecological environment resilience in China. Environ. Impact Assess. 2023, 98, 106954. [Google Scholar] [CrossRef]
- Mullick, M.R.A.; Nur, R.M.; Alam, M.J.; Islam, K.A. Observed trends in temperature and rainfall in Bangladesh using pre-whitening approach. Glob. Planet. Chang. 2019, 172, 104–113. [Google Scholar] [CrossRef]
- Al-Hedny, S.M.; Muhaimeed, A.S. Drought monitoring for Northern Part of Iraq using temporal NDVI and rainfall indices. In Environmental Remote Sensing and GIS in Iraq; Springer: Cham, Switzerland, 2020; pp. 301–331. [Google Scholar] [CrossRef]
- Qin, Y.; Shi, X.; Li, X.; Yan, J. Geographical indication agricultural products, livelihood capital, and resilience to meteorological disasters: Evidence from kiwifruit farmers in China. Environ. Sci. Pollut. Res. 2021, 28, 65832–65847. [Google Scholar] [CrossRef]
- Environme Leite, J.B.; Mantovani, J.R.S.; Dokic, T.; Yan, Q.; Chen, P.C.; Kezunovic, M. Resiliency assessment in distribution networks using GIS-based predictive risk analytics. IEEE Trans. Power Syst. 2019, 34, 4249–4257. [Google Scholar] [CrossRef]
- Qin, J.; Hao, X.; Hua, D.; Hao, H. Assessment of ecosystem resilience in Central Asia. J. Arid Environ. 2021, 195, 104625. [Google Scholar] [CrossRef]
- Sun, R.; Shi, S.; Reheman, Y.; Li, S. Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. Int. J. Disaster Risk Reduct. 2022, 82, 103344. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H.T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Qi, K.; Wang, W.; Cai, W.; Chen, N. Research and analysis of ecological environment quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Pan, Z.; He, J.; Liu, D.; Wang, J. Predicting the joint effects of future climate and land use change on ecosystem health in the Middle Reaches of the Yangtze River Economic Belt, China. Appl. Geogr. 2020, 124, 102293. [Google Scholar] [CrossRef]
- Li, K.; Zhou, Y.; Xiao, H.; Li, Z.; Shan, Y. Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt cities. Sci. Total Environ. 2021, 775, 145927. [Google Scholar] [CrossRef]
Latent Variables | Observed Variables | |
---|---|---|
Endogenous variables | Ecological resilience | Ecological resilience index |
Social development | Population density, Urban population, Ratio of the building area | |
Economic development | Per capita GDP, Total gas supply, Liquefied petroleum gas supply | |
Infrastructure construction | Road density, Density of urban sewage pipes, Technology input, Ratio of green area | |
Exogenous variables | Natural disaster risk | Topographic relief, Maximum three-day consecutive precipitation, NDVI |
Environmental pollution | Volume of industrial particulate emission, Volume of sulfur dioxide emission, Volume of nitrogen dioxide emission |
Indicator | NDVI | SWCI | NDSIM | LST | Eigenvalue | Contribution Rate (%) | |
---|---|---|---|---|---|---|---|
2000 | PC1 | 0.47 | 0.59 | −0.53 | −0.37 | 0.038 | 83.27 |
PC2 | −0.27 | −0.28 | 0.09 | −0.92 | 0.005 | 10.18 | |
PC3 | −0.84 | 0.39 | −0.37 | 0.09 | 0.002 | 4.90 | |
PC4 | 0.04 | −0.65 | −0.75 | 0.11 | 0.001 | 1.64 | |
2005 | PC1 | 0.50 | 0.66 | −0.47 | −0.31 | 0.031 | 79.88 |
PC2 | −0.14 | −0.26 | 0.12 | −0.95 | 0.005 | 12.92 | |
PC3 | −0.85 | 0.37 | −0.37 | −0.02 | 0.002 | 5.36 | |
PC4 | 0.09 | −0.60 | −0.79 | 0.05 | 0.001 | 1.85 | |
2010 | PC1 | 0.54 | 0.55 | −0.53 | −0.35 | 0.032 | 77.23 |
PC2 | −0.35 | −0.16 | 0.10 | −0.92 | 0.006 | 14.34 | |
PC3 | −0.77 | 0.41 | −0.46 | 0.17 | 0.003 | 6.57 | |
PC4 | −0.04 | 0.71 | 0.70 | −0.02 | 0.001 | 1.86 | |
2015 | PC1 | 0.59 | 0.61 | −0.48 | −0.23 | 0.032 | 87.24 |
PC2 | 0.77 | −0.31 | 0.37 | 0.43 | 0.002 | 6.47 | |
PC3 | −0.22 | 0.31 | −0.30 | 0.87 | 0.002 | 4.49 | |
PC4 | 0.09 | −0.66 | −0.74 | 0.01 | 0.001 | 1.80 | |
2020 | PC1 | 0.47 | 0.59 | −0.55 | −0.36 | 0.034 | 72.4 |
PC2 | −0.80 | 0.15 | −0.14 | −0.56 | 0.008 | 17.27 | |
PC3 | 0.38 | −0.41 | 0.36 | −0.74 | 0.004 | 8.50 | |
PC4 | −0.004 | −0.67 | −0.74 | 0.01 | 0.001 | 1.84 |
Indicator | The Middle Reaches of the YREB | The Lower Reaches of the YREB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000 | 2005 | 2010 | 2015 | 2020 | |
NDVI | 0.76 | 0.79 | 0.77 | 0.80 | 0.71 | 0.74 | 0.78 | 0.74 | 0.74 | 0.72 |
SWCI | 0.51 | 0.72 | 0.57 | 0.70 | 0.63 | 0.47 | 0.71 | 0.52 | 0.64 | 0.56 |
NDSIM | 0.39 | 0.32 | 0.38 | 0.48 | 0.38 | 0.41 | 0.33 | 0.40 | 0.52 | 0.42 |
LST | 0.60 | 0.61 | 0.60 | 0.68 | 0.52 | 0.61 | 0.63 | 0.61 | 0.69 | 0.54 |
Fit Goodness | X2/df | SRMR | GFI | AGFI | NFI | CFI | RMSEA |
---|---|---|---|---|---|---|---|
metric value | 2.560 | 0.029 | 0.969 | 0.941 | 0.978 | 0.986 | 0.059 |
Paths | Estimate | S.E. | C.R. | p |
---|---|---|---|---|
Economic development → Natural disaster risk | −0.771 | 0.040 | −7.092 | *** |
Economic development → Social development | 0.786 | 0.021 | 4.747 | *** |
Natural disaster risk → Social development | −0.346 | 0.065 | −2.394 | 0.017 |
Social development → Environmental pollution | 0.536 | 0.038 | 3.761 | *** |
Economic development → Infrastructure construction | 0.587 | 0.044 | 4.805 | *** |
Social development → Infrastructure construction | 0.422 | 0.034 | 2.949 | 0.002 |
Economic development → Ecological resilience | 0.122 | 0.047 | 0.287 | 0.004 |
Natural disaster risk → Ecological resilience | 0.572 | 0.133 | 4.306 | *** |
Environmental pollution → Ecological resilience | −0.127 | −1.358 | −1.358 | 0.021 |
Social development → Ecological resilience | −0.522 | 0.629 | −0.829 | 0.207 |
Infrastructure construction → Ecological resilience | 0.245 | 0.485 | 0.357 | 0.121 |
Effects | Economic Development | Natural Disaster Risk | Social Development | Environmental Pollution | Infrastructure Construction |
---|---|---|---|---|---|
Direct effect | 0.122 | −0.899 | −0.387 | −0.127 | 0.245 |
Indirect effect | 0.468 | 0.121 | 0.035 | 0.000 | 0.000 |
Total effect | 0.590 | −0.778 | −0.351 | −0.127 | 0.245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Wu, H.; Li, Z. Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sens. 2023, 15, 430. https://doi.org/10.3390/rs15020430
Peng L, Wu H, Li Z. Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sensing. 2023; 15(2):430. https://doi.org/10.3390/rs15020430
Chicago/Turabian StylePeng, Lu, Haowei Wu, and Zhihui Li. 2023. "Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt" Remote Sensing 15, no. 2: 430. https://doi.org/10.3390/rs15020430
APA StylePeng, L., Wu, H., & Li, Z. (2023). Spatial–Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sensing, 15(2), 430. https://doi.org/10.3390/rs15020430