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Abstract: Ecological environment quality and resilience assessment is an important prerequisite
for ensuring the coordination and stability of socio-economic development and eco-environment
protection. Remote sensing technology has provided new approaches for quantitatively evaluating
regional ecological environment quality and resilience rapidly, accurately, and objectively. Taking the
middle and lower reaches of the Yangtze River Economic Belt (YREBML) as an example, to assess
ecological environment quality, this study calculated the remote sensing ecological index (RSEI)
based on the Google Earth Engine using Moderate Resolution Imaging Spectroradiometer (MODIS)
data with a spatial resolution of 500 m during 2000–2020. An evaluation index to assess ecological
resilience and its spatial pattern based on the RSEI of 2000–2020 was then constructed. The evaluation
index was constructed from two dimensions, including the sensitivity and adaptability of the RSEI.
Finally, this study identified key factors that affect ecological residence based on a structural equation
model. The results showed that the overall RSEI was at moderate and good levels in the YREBML
during 2000–2020, accounting for more than 85% of the total area. Its spatial characteristics showed
that the RSEI was higher in the middle reaches than in the lower reaches of the YREB, and higher
in the south than in the north. The overall RSEI in the YREBML showed a decreasing trend during
2000–2020, with 54.36% of the region improving and 45.64% declining. Areas with declining RSEI
were concentrated in Anhui, while the increasing RSEI was observed in Zhejiang. In addition, the
spatial pattern of ecological resilience was characterized by high resilience in the north and east, and
low resilience in the south and west. High resilience areas accounted for 40.48% of the YREBML,
mainly contributed by Jiangxi and Hunan provinces. The driving factors analysis results indicated
that economic development, natural disaster risk, and environmental pollution would further affect
ecological resilience of urban systems. This study provides more scientific and effective data support
for ecological environment monitoring and governance.

Keywords: ecological environment quality; ecological resilience; remote sensing ecological index;
environment management; MODIS; Yangtze River Economic Belt

1. Introduction

The ecological environment is a complex system composed of economic, natural, and
social factors, and is closely related to the human living environment and social sustainable
development. The obvious acceleration of industrialization and urbanization, population
agglomeration, and urban expansion have intensified the disturbance and destruction of
the ecological environment [1–3]. Environmental pollution, resource shortages, ecosystem
degradation, and other ecological environmental problems have become an important
bottleneck limiting social and economic development [4–6]. In addition, frequent extreme
weather events affected by climate change, such as droughts, floods, heavy rains, and
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tropical typhoons, threaten the sustainable development of the ecological environment [7].
Ecological environment quality reflects the degree of good or bad ecological environment,
which directly affects the human living environment and socio-economic development [8].
Therefore, it is important to establish a scientific evaluation system and quantitative model
of ecological environment quality for objectively understanding and evaluating the ecologi-
cal quality status and changes in the region, which has important guiding significance to
achieve regional socio-economic green development.

Ecological environment quality assessment is an important tool to analyze the spatial
and temporal changes of the eco-environment based on a specific evaluation criterion,
reflecting the eco-environmental status and its suitability for economic and social develop-
ment. Some research has used various indicators to evaluate the eco-environment, including
the air quality index [9], water quality index [10], and vegetation cover [11]. Recently, some
studies have combined various factors into one indicator to comprehensively assess the
eco-environment instead of considering a single environmental indicator [12,13]. Therefore,
eco-environment quality assessment has mostly used the pressure–state–response (PSR)
model to construct an indicator system and applied hierarchical analysis, comprehensive
index evaluation, the fuzzy judgment method, and cluster analysis [14–16] to quantify
the ecological environment quality status. However, these methods are easily affected by
human subjective factors and are limited by small-scale socioeconomic statistics. With the
development of remote sensing technology, multi-source remote sensing data are widely
applied in ecological environment research, providing information on land cover types,
vegetation cover, surface temperature, and the water body index [17,18]. Remote sensing-
derived environmental factors such as surface temperature, the NDVI, humidity, and land
cover can reflect changes in the ecological environment and the impact of climate change
on the environment [19]. Satellite remote sensing has provided global higher spatial and
temporal resolution products, which are widely used for water resources management
and ecological environment monitoring [20,21]. Xu et al. used the indicators of greenness,
heat, humidity, and dryness extracted from Landsat satellite data to construct the remote
sensing ecological index (RSEI) for ecological environment quality assessment, which is
widely used in the evaluation of ecological quality on a small scale, such as municipalities
and counties [22,23]. However, the temporal resolution of Landsat data is low, and it is
difficult to obtain high-quality images of the same period in the region due to weather and
terrain conditions. Moderate Resolution Imaging Spectroradiometer (MODIS) data have
high spatial resolution, complete time series, and a large spatial span. The use of MODIS
data to construct the RSEI model is significant for achieving a comprehensive evaluation of
ecological environment quality on a large scale.

Facing multiple crises and challenges caused by global changes and intensified human
activities, how to cope with various risks and maintain ecological resilience has become
one of the most important issues for regional sustainable development. The concept of
ecological resilience was originally introduced by Holling (1973) as a concept for under-
standing the ability of an ecosystem with alternative attractors to persist within a state
when subjected to disturbances [24–28]. Ecological resilience is mainly influenced by factors
such as environmental change, social progress, economic growth, or political change, and is
widely used in various ecological and socio-economic research. Resilience research mainly
focuses on natural ecosystems and socio-economic–ecological complex systems. Some
studies have constructed resilience assessment models and resilience evaluation indicator
systems to assess ecological resilience or analyzed the relationship between ecological
resilience and urbanization [29–32]. Among which, building a comprehensive evaluation
index with indicators representing the resilience of system elements or resilience process
and further assigning weights for each indicator is most widely used [31]. For example,
Zhang et al. used a multi-criteria comprehensive evaluation system with a GIS-based
method to assess wetland restoration potential [33]. The weights of the evaluation index
can be identified by hierarchical analysis, the entropy weighting method, and factor anal-
ysis. However, resilience is a process concept that encompasses two processes, namely
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resistance and recovery [34], though few studies have conducted ecological resilience as-
sessment studies based on the concept of resilience. The RSEI reflects the level of ecological
ecosystem quality, while resilience further reflects the degree of disturbance withstanding
environmental, political, economic, and social shocks and stresses. Therefore, taking the
RSEI as the ecological resilience surrogate, this study quantitatively analyzed the spatial
pattern of regional ecological resilience based on the above concept of resilience and iden-
tified high or low-resilience areas of cities, which can provide data support for targeted
adaptive management.

The middle and lower reaches of the Yangtze River Economic Belt (YREBML) is a
typical region with rapid economic development while facing multiple environmental
problems. Therefore, taking the YREBML as the research object, this study aimed to
comprehensively detect the spatiotemporal changes of the RSEI from 2000 to 2020 and
further analyze the spatial pattern of ecological resilience. Firstly, this study employed four
ecological environment indicators, including the NDVI (Normalized Difference Vegetation
Index), SWCI (Surface Water Content Index), NDSIM (MODIS Normalized Difference Built-
up and Soil Index), and LST (Land Surface Temperature Index), to construct the RSEI model
based on MODIS data from 2000 to 2020. This study then assessed spatiotemporal changes
of the RSEI. Further, based on the concept of resilience, this study analyzed the spatial
pattern of ecological resilience of urban systems in the YREBML. Finally, the key driving
factors that affect ecological resilience were identified based on a structural equation model
(SEM). This study aims to provide a new method to achieve a comprehensive evaluation
of ecological environment quality and ecological resilience on a regional scale, which can
support monitoring, restoration, and adaptation studies of fragile ecosystems.

2. Materials and Methods
2.1. Study Area

The YREB plays an important supporting role in the strategy for large-scale develop-
ment of western China, strategy for the rise of central China, and strategy for the trailblazing
development of eastern China, and is an important link in the coordinated development
of the regional economy. The YREBML is an important economic development area and
agricultural production area in China. The YREBML covers seven provinces and munici-
palities, including Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, and Hunan, with
an area of 0.92 million km2, accounting for 9.41% of China’s total area (Figure 1). Its GDP
accounted for 35.08% of China’s total in 2020. However, the increasing intensity of regional
development such as urbanization, industrialization, and rapid land use changes, as well
as unreasonable human activities, threatens the sustainable development of the ecological
environment in the YREBML. In addition, the multiple effects of natural disasters, climate
change, and uncoordinated land development have a negative effect on the green devel-
opment of natural resources and the ecological environment in this region. The sloppy
and wasteful use of resources, increasingly serious environmental pollution, and degra-
dation of the ecosystem have become major bottlenecks that limit high-quality economic
development. Hence, assessing spatial and temporal changes of ecological environment
quality and ecological resilience has a significant importance for sustainable development
in the YREBML.

2.2. Data Source

The MODIS data provide an effective data support to regularly observe and monitor
the ecological environment on a large scale. Therefore, in order to distinguish vegetation
from non-vegetation, the products of MOD091A and MOD11A2 covering the YREBML from
May to October of 2000–2020 were obtained to calculate the RSEI. The remote sensing data
were obtained from the MODIS data product website (https://ladsweb.modaps.eosdis.nasa.
gov/ (accessed on 9 November 2022)). The products of MOD09A1 and MOD11A2 were
pre-treated with radiation calibration and atmospheric calibration for reliable accuracy and
quality. The MOD09A1 product consists of seven wavelength bands (620 to 2155 nm) from
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visible to short-wave infrared, with a spatial resolution of 500 m and a temporal resolution
of 8 day. The MOD11A2 product is a 1 km resolution surface temperature product that
includes both daytime and nighttime surface temperatures and has a temporal resolution of
8 day. In terms of data processing, this study processed MODIS images based on the Google
Earth Engine (GEE) platform for removing clouds and anomalous values, and took the
average value to obtain image data for each year in the YREBML. The study further obtained
the NDVI, SWCI, NDSIM, and LST, based on which the RSEI was calculated by principal
component analysis. In addition, this study used SEM to identify the driving factors
of ecological resilience on a city scale based on natural environment and socioeconomic
data in 2020. The natural environment data mainly included precipitation, the DEM,
land use data, and the NDVI. The daily precipitation was collected from the National
Meteorological Information Center (http://data.cma.cn (accessed on 9 November 2022)).
Land use data and digital elevation model (DEM) data were derived from the Chinese
Academy of Sciences Resource and Environment Data Center (http://www.resdc.cn/
(accessed on 9 November 2022)). The NDVI, land use, and precipitation data were at
a spatial resolution of 1 km. Volumes of industrial particulate emission, sulfur dioxide
emission, and nitrogen dioxide emission were used to indicated environmental pollution.
The social development factors included population density, urban population, and ratio of
the building area, while the economic development factors included per capita GDP, total
gas supply, and liquefied petroleum gas supply. Road density, density of urban sewage
pipes, technology input, and ratio of green area were obtained to represent infrastructure
construction. The socioeconomic data and environmental data were collected from the
China City Statistical Yearbook.
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2.3. Methodology

The methodology framework to assess the RSEI and ecological resilience in the
YREBML is shown in Figure 2. First, four indicators, including the NDVI, SWCI, NDSIM,
and LST, were calculated based on long time series MOD09A1 and MOD11A2 products.
Based on principal component analysis (PCA), this study then calculated the RSEI to
quantitatively assess the characteristics of ecological environment quality changes during
2000–2020 in the YREBML. Finally, this study introduced the concept of resilience and
adopted a bottom-up approach to calculate the ecological sensitivity and adaptability based
on the RSEI of 2000–2020, then the ecological resilience was derived by the combination
of the ecological sensitivity and adaptability. Based on SEM, this study identified the
driving factors of ecological resilience and further proposed suggestions for ecological
resilience improvement.
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2.3.1. Remote Sensing Ecological Index

The RSEI was proposed to monitor and assess regional ecological changes, and com-
bines four indicators that are strongly correlated to ecological status [22,23]. These four
indicators represented greenness, wetness, dryness, and heat, and were widely used in
ecological environment assessment. The RSEI can be expressed as a function of these four
indicators:

RSEI = f (Greenness, Wetness, Dryness, and Heat) (1)

The NDVI (Normalized Difference Vegetation Index) is used to represent the greenness
index. The biomass, leaf area index, and vegetation cover of green vegetation are further
quantified by obtaining the difference between Near Infrared (NIR) and red band (R) of
remote sensing data. Thus, the NDVI can be expressed by the following equations:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

=
b2 − b1

b2 + b1
(2)

where ρNIR and ρRed represent the reflectance of Near Infrared and red band, and b2 and b1
are the 2nd and 1st bands of MOD09A1, respectively.

The wetness index is denoted with the SWCI. The SWCI can effectively extract the
moisture content of the vegetation canopy and ground surface, and is widely used in
surface drought research. The SWCI can be calculated through the following equations:

SWCI =
ρSWIR1 − ρSWIR2

ρSWIR1 + ρSWIR2
=

b6 − b7

b6 + b7
(3)
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where ρSWIR1 and ρSWIR2 are reflectance of the short-wave infrared, and b6 and b7 are the
6th and 7th bands of MOD09A1, respectively.

NDSIM represents the dryness index, compositing of the bare soil index (BSI) and the
normalized difference building index (NDBI). NDSIM has a negative effect on the ecological
environment, which is expressed as follows:

NDBIM =
ρRed − ρGreen
ρRed + ρGreen

=
b1 − b4

b1 + b4
(4)

BSIM =
(ρSWIR1 + ρRed)− (ρNIR + ρBlue)

(ρSWIR1 + ρRed) + (ρNIR + ρBlue)
=

(b6 + b1)− (b2 + b3)

(b6 + b1) + (b2 + b3)
(5)

NDSIM =
NDBIM + BSIM

2
(6)

where ρBlue and ρGreen are the reflectance of the blue and green bands, respectively, and b3
is the 3rd band of MOD09A1. The meanings of the other parameters are the same as those
in the previous equations.

The heat index is denoted by LST. The LST reflects the degree of heat radiated from
the ground and is a non-negligible variable in the ecological environment. The LST can be
calculated via the following equation:

LST = 0.02DN − 273.15 (7)

where DN is the grayscale value of the surface temperature product image of MOD11A2.
Thus, the RSEI can be expressed as a function of four indicators, including the NDVI,

SWCI, NDSIM, and LST. PCA is a multivariate statistical method which is widely used
to determine the weight of indicators. In addition, the number of variables is reduced
by linear orthogonal transformation of multiple variables, while keeping the information
of the original variables as much as possible in the PCA. PCA can effectively integrate
the four components, and determine the weight of the component indicators according
to the nature of the data itself and the contribution to each principal component, so as to
avoid deviations caused by human subjective factors. In order to eliminate the influence of
the dimension, the dispersion standardization method was used to unify the four index
components between 0 and 1 before PCA in this study. Thus, the RSEI can be expressed by
the following equations:

RSEI0 = 1− {PC1[ f (NDVI, SWCI, NDSIM and LST)]} (8)

RSEI =
RESI0 − RESI0_min

RESI0_max − RESI0_min
(9)

where PC1 is the first principal component of the four indicators; RSEI0 is the initial ecolog-
ical index; RSEI0_min and RSEI0_max are the minimum and maximum values of the initial
ecological index, respectively; and RSEI is the normalized remote sensing ecological index.

2.3.2. Ecological Resilience

The IPCC’s fifth report proposed that vulnerability is the tendency or habit of a system
to be susceptible to adverse effects, including sensitivity and adaptability. Vulnerability
is positively correlated with sensitivity and negatively correlated with adaptability. Thus,
vulnerability is the sensitivity index minus the adaptability index. In terms of resilience,
ecological resilience is the opposite of ecological vulnerability [35–38]. Therefore, based
on a bottom-up approach, this study calculated ecosystem sensitivity with the degree of
deviation of the RSEI from the multi-year average condition, and ecosystem adaptation
with the trend of the RSEI deviation from the multi-year average condition. Finally, it
assessed ecological resilience to climate change and other external disturbances at the
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ecosystem scale, where ecological resilience was the value of ecological adaptation minus
ecological sensitivity.

(1) Ecological sensitivity

Sensitivity is the degree to which a system responds to climate change or other pertur-
bations. Therefore, the ecological sensitivity is expressed by the interannual fluctuations of
the RSEI from 2000 to 2020 to reflect the dispersion of the RSEI from the mean value. The
calculation equation is as follows:

S =
∑n

t=1
∣∣Fi − F

∣∣
F

(10)

where i represents the ith year (n = 21); Fi represents the RSEI value of the ith year; F
represents the average value of the RSEI; and S represents the variability of the RSEI,
namely the ecological sensitivity index, which reflects the degree of dispersion of the RSEI
relative to the average value in a specific time period.

(2) Ecological adaptability

Adaptability is the ability of a system to maintain and restore its structure facing
climate change or other disturbances. Ecological adaptability refers to the variability trend
of a system over a certain period of time, which is used to measure its deviation from
homeostasis. Thus, the ecological adaptability in this study is represented by the slope of
the linearly fitted trend line of the interannual variability of the RSEI from 2000 to 2020.

y = Ax + B (11)

A =
n ∑ xy− (∑ x)(∑ y)

n ∑ x2 − (∑ x)2
(12)

where x is the time series, corresponding to the years from 2000 to 2020; y is the interannual
variability of the RSEI, that is, the absolute change of the RSEI per year, which is the value
of the annual RSEI minus the average value of the RSEI from 2000 to 2020; A is the change
trend of the RSEI variability, namely the fitness index, which is the regression slope of the
datasets y and x; and B is the intercept.

Resilience is a combination of the sensitivity and adaptability of the system to external
disturbances, which is negatively correlated with sensitivity and positively correlated with
adaptability. Before the calculation of resilience, the results of sensitivity and adaptability
should be standardized, respectively [39]. Ecological resilience can then be expressed by
the following equation:

R = A′ − S′ (13)

where R is ecological resilience, A′ is the standardized ecological sensitivity, and S′ is the
standardized ecological adaptability.

2.3.3. Structural Equation Model

The structural equation model (SEM) can not only simulate the intrinsic logical re-
lationships between multiple independent variables and multiple dependent variables
simultaneously, but also estimate the factor structure and inter-factor relationships simul-
taneously [40]. The variables in SEM can be divided into observed and latent variables,
where the latent variables cannot be measured directly and need to be reflected indirectly
by the observed variables. Based on the correlation between variables, variables can be
classified into exogenous and endogenous variables [41]. Exogenous variables only play an
explanatory role in SEM, that is, they can only affect other variables, while endogenous
variables can be affected by both exogenous and endogenous variables in the model.

Ecological resilience requires the ecological system to be responsive to impacts caused
by natural disasters or human activities [42]. Economic growth, social development,
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environmental pollution, land use changes, infrastructure construction, and climate change
have contributed to ecological resilience [43–45]. Therefore, this study identified the factors
affecting ecological resilience as social development, economic development, infrastructure
construction, environmental pollution, and natural disaster risk. Social development
included population growth and urbanization, which were represented by population
density, urban population, and ratio of the building area. Economic development included
economic growth and energy consumption, which were denoted with per capita GDP,
total gas supply, and liquefied petroleum gas supply. Climate change has increased the
frequency of extreme events and increased natural disaster risk such as floods, droughts,
and storm surges. Studies have mostly used the NDVI, topographic relief, and maximum
continuous three-day precipitation to monitor and assess natural disaster risk, such as
the occurrence of floods and droughts [46,47]. The NDVI is an indicator to characterize
the hazard-inducing environment. Topographic relief and maximum continuous three-
day precipitation were used to characterize the topography and intensity of precipitation.
Therefore, the study calculated topographic relief and maximum continuous three-day
precipitation indicators based on the DEM and daily precipitation data, and used three
indicators to represent natural disaster risk. Infrastructure construction mainly included the
construction of roads, drainage pipes, and urban green areas. Thus, road density, density
of urban sewage pipes, technology input, and ratio of green area were used to characterize
infrastructure construction. Environmental pollution was mainly characterized by the
emissions of different pollutants (Table 1).

Table 1. Selected variable for identifying key driving factors of ecological resilience.

Latent Variables Observed Variables

Endogenous variables Ecological resilience Ecological resilience index

Social development Population density, Urban population, Ratio of
the building area

Economic development Per capita GDP, Total gas supply, Liquefied
petroleum gas supply

Infrastructure
construction

Road density, Density of urban sewage pipes,
Technology input, Ratio of green area

Exogenous variables Natural disaster risk Topographic relief, Maximum three-day
consecutive precipitation, NDVI

Environmental pollution
Volume of industrial particulate emission,
Volume of sulfur dioxide emission, Volume of
nitrogen dioxide emission

This study used covariance-based SEM (CB-SEM) in our analysis. CB-SEM is a statisti-
cal technique that is used to test a proposed structural model by estimating the relationships
between observed variables and latent constructs based on the covariances among the
observed variables. It is a widely used approach that allows for testing complex, multi-
factor models and has the advantage of being based on the observed data rather than
relying on subjective judgment or preconceived notions about the relationships in the
model. The CB-SEM construction includes five parts, namely, model setting, identification,
estimation, evaluation, and correction. Model setting represents the relationship among
variables in SEM with the measurement model and structural model. According to the
relevant literature, the following hypotheses are proposed: H1: Natural disaster risk has a
significant negative effect on ecological resilience; H2: Social development has a significant
positive impact on ecological resilience; H3: Infrastructure development has a significant
positive impact on ecological resilience; H4: Economic development has a significant posi-
tive impact on ecological resilience; H5: Environmental pollution has a significant negative
impact on ecological resilience; H6: Economic development has a significant positive im-
pact on social development; H7: Economic development has a significant positive impact
on infrastructure development; H8: Economic development has a significant positive im-
pact on natural disaster risk; H9: Social development has a significant positive impact on
infrastructure construction; H10: Social development has a significant positive effect on
environmental pollution. Due to the large sample size, the maximum likelihood method
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was used for model parameter estimation and correction to obtain the path coefficients
among the variables in this study.

3. Results
3.1. PCA Results of RSEI Indicators

Table 2 displays the PCA results of the four indicators, including the NDVI, SWCI,
NDSIM, and LST. The results showed that the contribution of the four indicators to the first
principal component (PC1) was relatively stable. The contribution of the eigenvalues of PC1
was 83.27%, 79.88%, 77.23%, 87.24%, and 72.40% during 2000 and 2020, respectively, which
were greater than 70%. It indicated that PC1 already contained most of the information of
these four indicators. In addition, the LST and NDSIM had a negative effect on ecological
environment quality; however, the SWCI and NDVI had a positive effect on ecological
environment quality. The ecological benefits of these four indicators were similar to the
actual situation. Therefore, this study used PC1 to construct a comprehensive ecological
environment quality index.

Table 2. Results of PCA for four indicators of RSEI in the YREBML during 2000–2020.

Indicator NDVI SWCI NDSIM LST Eigenvalue Contribution Rate (%)

2000

PC1 0.47 0.59 −0.53 −0.37 0.038 83.27
PC2 −0.27 −0.28 0.09 −0.92 0.005 10.18
PC3 −0.84 0.39 −0.37 0.09 0.002 4.90
PC4 0.04 −0.65 −0.75 0.11 0.001 1.64

2005

PC1 0.50 0.66 −0.47 −0.31 0.031 79.88
PC2 −0.14 −0.26 0.12 −0.95 0.005 12.92
PC3 −0.85 0.37 −0.37 −0.02 0.002 5.36
PC4 0.09 −0.60 −0.79 0.05 0.001 1.85

2010

PC1 0.54 0.55 −0.53 −0.35 0.032 77.23
PC2 −0.35 −0.16 0.10 −0.92 0.006 14.34
PC3 −0.77 0.41 −0.46 0.17 0.003 6.57
PC4 −0.04 0.71 0.70 −0.02 0.001 1.86

2015

PC1 0.59 0.61 −0.48 −0.23 0.032 87.24
PC2 0.77 −0.31 0.37 0.43 0.002 6.47
PC3 −0.22 0.31 −0.30 0.87 0.002 4.49
PC4 0.09 −0.66 −0.74 0.01 0.001 1.80

2020

PC1 0.47 0.59 −0.55 −0.36 0.034 72.4
PC2 −0.80 0.15 −0.14 −0.56 0.008 17.27
PC3 0.38 −0.41 0.36 −0.74 0.004 8.50
PC4 −0.004 −0.67 −0.74 0.01 0.001 1.84

The mean values of the four normalized indicators in the middle and lower reaches
of the YREB during 2000–2020 are shown in Table 3. The NDVI and SWCI of the middle
reaches of the YREB were higher than those of the lower reaches, while the LST and NDSIM
were lower than those of the lower reaches during 2000–2020. The NDVI of the middle
reaches of the YREB decreased from 0.76 in 2000 to 0.71 in 2020, while in the lower reaches
of the YREB, it decreased from 0.74 to 0.72. The decreased NDVI led to the reduction of
ecological environment quality. In addition, the increased LST and NDSIM had a negative
effect on ecological environment quality during 2000 and 2015. Compared with 2000, the
positive effect of decreased NDVI was greater than the negative effect of the other three
indexes on ecological environment quality.

Table 3. Mean values of four normalized indicators of RSEI in the middle and lower reaches of the
YREB during 2000–2020.

Indicator
The Middle Reaches of the YREB The Lower Reaches of the YREB

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

NDVI 0.76 0.79 0.77 0.80 0.71 0.74 0.78 0.74 0.74 0.72
SWCI 0.51 0.72 0.57 0.70 0.63 0.47 0.71 0.52 0.64 0.56

NDSIM 0.39 0.32 0.38 0.48 0.38 0.41 0.33 0.40 0.52 0.42
LST 0.60 0.61 0.60 0.68 0.52 0.61 0.63 0.61 0.69 0.54
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3.2. Spatial and Temporal Changes of RSEI

The results revealed that the RSEI showed a trend of increasing and then decreasing in
the YREBML during 2000–2020. The average RSEI was 0.62, 0.66, 0.64, 0.66, and 0.60 in 2000,
2005, 2010, 2015, and 2020, respectively. To further quantitatively analyze the spatial and
temporal changes of the RSEI in different periods, it was divided into five classes of poor
(RSEI < 0.2), fair (0.2≤ RSEI < 0.4), moderate (0.4≤ RSEI < 0.6), good (0.6≤ RSEI < 0.8), and
excellent (RSEI ≥ 0.8) in the YREBML (Figure 3A). Its spatial characteristics showed that
the RSEI was overall higher in the middle reaches of the YREB than in the lower reaches,
and higher in the south than in the north. The areas with good and excellent ecological
environment were mainly distributed in northwestern Hubei, Jiangxi, and Zhejiang, while
the areas with poor and fair ecological environment were distributed in the southeastern
and eastern regions of the YREBML. In addition, urbanized areas such as Shanghai and
Jiangsu had a poor ecological environment.
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The overall RSEI was at moderate and good levels in the YREBML. However, there
were significant differences between years. The areas with poor and fair RSEI accounted for
0.29% and 3.34% of the area of the YREBML in 2000, respectively (Figure 3B). In 2005, the
regional ecological environment quality improved significantly, and the proportion of areas
with poor and fair eco-environment was only 0.18% and 2.27%, respectively. In particular,
the RSEI of Jiangsu and Anhui improved by 13.73% and 13.61%, respectively, during
2000–2005. However, due to rapid urbanization, industrialization, and human activities,
the RSEI of Shanghai decreased by 6.27% during 2000–2005. In 2010, the regional ecological
quality declined, and the poor, fair, and medium areas gradually expanded, accounting
for 0.63%, 3.77%, and 27.04% of the area of the YREBML, respectively. Compared with
2005, the RSEI in the lower reaches of the YREB decreased significantly, and the RSEI
of Anhui, Jiangsu, Shanghai, and Zhejiang decreased by 4.94%, 13.06%, 14.09%, and
2.22%, respectively. The areas with excellent eco-environment gradually expanded in
2015, accounting for 15.43% of the total area of the region, mainly in Jiangxi and Zhejiang.
However, eco-environment quality decreased in the YREBML in 2020. The areas with
poor, fair, and moderate eco-environment expanded, accounting for 1.05%, 6.72%, and
36.47% of the total area, respectively. The areas with poor and fair eco-environment in
Shanghai and Jiangsu continued to expand to distant suburban dispersal in 2020. In
terms of the urbanized areas, the areas with poor and fair eco-environment showed an
increasing trend in Hubei, Hunan, and Jiangxi, especially Wuhan, Changsha, Nanchang,
and Xiaogan in 2020.

This study calculated the RSEI change rate to further understand the changes in the
ecological environment quality of the YREBML from 2000 to 2020 (Figure 4). The results
showed that there was a significantly decreasing trend of RSEI in this region during 2005–
2010 and 2015–2020. More than 50% of grids had RSEI change rates below zero during
2005–2010, and they were mainly in Jiangsu, Shanghai, and Anhui. This was mainly due to
the large-scale urban development and industrial land construction in the lower reaches of
the YREB, which has led to an increase in surface temperatures and bare soil area, reducing
ecological environment quality. More than 80% of grids had RSEI change rates below zero
during 2015–2020, and they were mainly in Hunan, Hubei, Jiangxi, Jiangsu, and Shanghai.
The proportion of area that experienced ecological environment degradation from 2015 to
2020 was 82.24%, which was much higher than the degraded area proportion of 59.99%
from 2005 to 2010. Development planning of urban groups in the middle reaches of the
Yangtze River was proposed in 2015 to promote the economic development of Hubei,
Hunan, and Jiangxi. The average annual growth of the regional economy of the middle
reaches of YREB from 2015 to 2019 was 8.2%, which was higher than the average annual
growth of the regional economy of the Yangtze River Delta urban agglomeration of 7.7%. In
addition, the significant growth of urban impervious surfaces led to a decline in ecological
environment quality in this region. However, the ecological environment improvement
areas were distributed in Hunan and Jiangxi during 2010 and 2015. In 2010–2015, the
eco-environment improvement area accounted for 63.72% of the total area, which was
larger than the eco-environment degradation area of 36.28%.

3.3. Spatial Pattern of Ecological Resilience

The ecological resilience ranged from −0.31 to 0.80 in the YREBML. The natural break
is a systematic cluster analysis method, which starts from the possible similarity and affinity
between the objects, and classifies and groups them according to the degree of similarity
or correlation of various characteristic signs between the objects. It is widely applied
in vulnerability or resilience classification [48–51]. Therefore, the ecological resilience
was further classified with the natural break method (Figure 5). Ecological resilience
refers to the ability of an ecosystem to maintain its normal functions and services under
internal and external forces. High ecological resilience means fewer changes after being
subjected to damage caused by an ecological disturbance and it being much easier for the
ecosystem to recover. The results showed that the spatial pattern of ecological resilience
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was characterized by high resilience in the north and east, and low resilience in the south
and west. High ecological resilience areas (>0.35) covered 40.48% of the whole region and
were mainly concentrated in the middle reaches of the YREB, accounting for 23.28% of the
total area. This was because these regions had fewer changes of RSEI under the influence
of factors such as climate change and human activities. However, low ecological resilience
areas (<0.25) covered 25.17% of the whole region and were distributed in Jiangsu and
Zhejiang, accounting for 10.85% of the total area. Due to economic development, climate
change, and human activities, the RSEI in these regions changed dramatically during 2000
and 2020, indicating that the eco-environment was damaged by an ecological disturbance.
It is worth noting that Shanghai had higher ecological resilience than other regions. This
was because the RSEI in Shanghai was relatively stable from 2000 to 2020, with an average
value of 0.44.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

and Shanghai. The proportion of area that experienced ecological environment degrada-
tion from 2015 to 2020 was 82.24%, which was much higher than the degraded area pro-
portion of 59.99% from 2005 to 2010. Development planning of urban groups in the middle 
reaches of the Yangtze River was proposed in 2015 to promote the economic development 
of Hubei, Hunan, and Jiangxi. The average annual growth of the regional economy of the 
middle reaches of YREB from 2015 to 2019 was 8.2%, which was higher than the average 
annual growth of the regional economy of the Yangtze River Delta urban agglomeration 
of 7.7%. In addition, the significant growth of urban impervious surfaces led to a decline 
in ecological environment quality in this region. However, the ecological environment 
improvement areas were distributed in Hunan and Jiangxi during 2010 and 2015. In 2010–
2015, the eco-environment improvement area accounted for 63.72% of the total area, 
which was larger than the eco-environment degradation area of 36.28%. 

 
Figure 4. Distribution of RSEI change rate in the YREBML, 2000–2005, 2005–2010, 2010–2015, and 
2015–2020. Note: Datum: D_WGS_1984; Projection: WGS_1984_UTM_Zone_50N; Representation 
scale: 1:17,000,000; Nominal scale: 1:250. 

3.3. Spatial Pattern of Ecological Resilience 
The ecological resilience ranged from −0.31 to 0.80 in the YREBML. The natural break 

is a systematic cluster analysis method, which starts from the possible similarity and af-
finity between the objects, and classifies and groups them according to the degree of sim-
ilarity or correlation of various characteristic signs between the objects. It is widely ap-
plied in vulnerability or resilience classification [48–51]. Therefore, the ecological resili-
ence was further classified with the natural break method (Figure 5). Ecological resilience 
refers to the ability of an ecosystem to maintain its normal functions and services under 
internal and external forces. High ecological resilience means fewer changes after being 
subjected to damage caused by an ecological disturbance and it being much easier for the 
ecosystem to recover. The results showed that the spatial pattern of ecological resilience 
was characterized by high resilience in the north and east, and low resilience in the south 
and west. High ecological resilience areas (>0.35) covered 40.48% of the whole region and 
were mainly concentrated in the middle reaches of the YREB, accounting for 23.28% of the 
total area. This was because these regions had fewer changes of RSEI under the influence 

Figure 4. Distribution of RSEI change rate in the YREBML, 2000–2005, 2005–2010, 2010–2015, and
2015–2020. Note: Datum: D_WGS_1984; Projection: WGS_1984_UTM_Zone_50N; Representation
scale: 1:17,000,000; Nominal scale: 1:250.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

of factors such as climate change and human activities. However, low ecological resilience 
areas (<0.25) covered 25.17% of the whole region and were distributed in Jiangsu and 
Zhejiang, accounting for 10.85% of the total area. Due to economic development, climate 
change, and human activities, the RSEI in these regions changed dramatically during 2000 
and 2020, indicating that the eco-environment was damaged by an ecological disturbance. 
It is worth noting that Shanghai had higher ecological resilience than other regions. This 
was because the RSEI in Shanghai was relatively stable from 2000 to 2020, with an average 
value of 0.44. 

 
Figure 5. Spatial pattern of ecological resilience in the YREBML during 2000–2020. Note: Datum: 
D_WGS_1984; Projection: WGS_1984_UTM_Zone_50N; Representation scale: 1:7,000,000; Nominal 
scale: 1:100. 

3.4. Driving Factors of Ecological Resilience 
In terms of the goodness-of-fit index of the hypothetical model, Chi-square/df was 

equal to 2.560, less than 3; GFI, AGFI, NFI, and CFI were equal to 0.969, 0.941, 0.978, and 
0.986, respectively, all greater than 0.9; SRMR was equal to 0.029, less than 0.05; and 
RMSEA was equal to 0.059, less than 0.08 (Table 4). The above parameters showed that 
the goodness of fit and the model fitness of the hypothetical model were relatively good. 

Table 4. The goodness-of-fit index of the hypothetical model. 

Fit Goodness X2/df SRMR GFI AGFI NFI CFI RMSEA 
metric value 2.560 0.029 0.969 0.941 0.978 0.986 0.059 

Note: The full terms of the parameters were as follows: SRMR (standardized root mean square re-
sidual), GFI (goodness of fit), AGFI (adjusted goodness of fit), NFI (normed fit index), CFI (compar-
ative fit index), RMSEA (root mean square error of approximation). 

The SEM was constructed based on ecological resilience theory, and the results veri-
fied related hypotheses, while social development and infrastructure development did 
not have significant effects on resilience, and hypotheses H2 and H3 were rejected (Figure 
6). The influence paths of each subsystem on ecological resilience showed that economic 
development had a significant positive influence on ecological resilience (Table 5). This 
indicated that the greater the economic development, the higher the ecological resilience, 

Figure 5. Spatial pattern of ecological resilience in the YREBML during 2000–2020. Note: Datum:
D_WGS_1984; Projection: WGS_1984_UTM_Zone_50N; Representation scale: 1:7,000,000; Nominal
scale: 1:100.



Remote Sens. 2023, 15, 430 13 of 19

3.4. Driving Factors of Ecological Resilience

In terms of the goodness-of-fit index of the hypothetical model, Chi-square/df was
equal to 2.560, less than 3; GFI, AGFI, NFI, and CFI were equal to 0.969, 0.941, 0.978, and
0.986, respectively, all greater than 0.9; SRMR was equal to 0.029, less than 0.05; and RMSEA
was equal to 0.059, less than 0.08 (Table 4). The above parameters showed that the goodness
of fit and the model fitness of the hypothetical model were relatively good.

Table 4. The goodness-of-fit index of the hypothetical model.

Fit Goodness X2/df SRMR GFI AGFI NFI CFI RMSEA

metric value 2.560 0.029 0.969 0.941 0.978 0.986 0.059

Note: The full terms of the parameters were as follows: SRMR (standardized root mean square residual), GFI
(goodness of fit), AGFI (adjusted goodness of fit), NFI (normed fit index), CFI (comparative fit index), RMSEA
(root mean square error of approximation).

The SEM was constructed based on ecological resilience theory, and the results verified
related hypotheses, while social development and infrastructure development did not
have significant effects on resilience, and hypotheses H2 and H3 were rejected (Figure 6).
The influence paths of each subsystem on ecological resilience showed that economic
development had a significant positive influence on ecological resilience (Table 5). This
indicated that the greater the economic development, the higher the ecological resilience,
which directly proved the importance of economic development on ecological resilience
improvement. Natural disaster risk had a significant negative effect on resilience. Areas
with concentrated rainfall and high topographic relief were more prone to disaster events,
leading to a decrease in ecological resilience. In addition, environmental pollution had a
significant negative effect on resilience and serious environmental pollution led to lower
ecological resilience. Therefore, strengthening environmental protection is extremely critical
to ecological resilience improvement.
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Table 5. SEM path coefficients for the identification of key driving factors of ecological resilience in
the YREBML.

Paths Estimate S.E. C.R. p

Economic development→ Natural disaster risk −0.771 0.040 −7.092 ***
Economic development→ Social development 0.786 0.021 4.747 ***
Natural disaster risk→ Social development −0.346 0.065 −2.394 0.017
Social development→ Environmental pollution 0.536 0.038 3.761 ***
Economic development→ Infrastructure
construction 0.587 0.044 4.805 ***

Social development→ Infrastructure construction 0.422 0.034 2.949 0.002
Economic development→ Ecological resilience 0.122 0.047 0.287 0.004
Natural disaster risk→ Ecological resilience 0.572 0.133 4.306 ***
Environmental pollution→ Ecological resilience −0.127 −1.358 −1.358 0.021
Social development→ Ecological resilience −0.522 0.629 −0.829 0.207
Infrastructure construction→ Ecological resilience 0.245 0.485 0.357 0.121

Note: *** p < 0.001; S.E. and C.R. refer to the standard error and critical ratio, respectively.

The direct, indirect, and total effect coefficients of the social development, economic
growth, infrastructure construction, natural disaster risk, and environmental pollution
subsystems on ecological resilience were calculated through the relationships among the
latent variables and the modification of the SEM (Table 6). The direct effect could be
expressed by the path coefficients between the variables, which represented the direct
effect of a variable on ecological resilience. Indirect effects referred to the effect of a
variable on ecological resilience through other variables. Each endogenous or exogenous
variable usually had multiple pathways affecting ecological resilience, including both direct
and indirect effects, and the total effect was the sum of the direct and indirect effects,
representing the total effect of a variable on the ecological resilience. Natural disaster
risk and economic development had the most significant direct and indirect effect on
ecological resilience, with values of −0.899 and 0.468, respectively. Therefore, economic
development and natural disaster risk had both direct and indirect effects on improving
regional ecological resilience. In addition, the direct effect of environmental pollution on
ecological resilience was −0.127, with no indirect effect. Environmental pollution, such as
air and water pollution, directly affected regional ecological resilience. In conclusion, the
key path to enhance ecological resilience depended on promoting economic growth and
improving the ecological environment.

Table 6. The effects of the five subsystems on ecological resilience in the YREBML.

Effects Economic
Development

Natural
Disaster Risk

Social
Development

Environmental
Pollution

Infrastructure
Construction

Direct effect 0.122 −0.899 −0.387 −0.127 0.245
Indirect effect 0.468 0.121 0.035 0.000 0.000

Total effect 0.590 −0.778 −0.351 −0.127 0.245

4. Discussion

Since the implementation of YREB development strategy in China, the YREBML
has become an important region for urbanization development and industrial clustering.
However, rapid economic development, population agglomeration, climate change, and
other human activities have led to a dramatical decrease of the ecological environment
in this region. Therefore, this study detected spatial–temporal changes of the RSEI and
further analyzed the spatial pattern of ecological resilience based on MODIS data from
2000 to 2020. Similar research is mostly based on Landsat data to construct the RSEI
model [52–55]. In addition, most studies have used Landsat 5, 7, and 8 surface reflectance
images to obtain long time series data on a small scale [56]. However, in terms of the
YREBML, there are some missing data strips in Landsat products due to sensor problems.
The overall accuracy of Landsat data for long time series is poor in this region. Thus, this
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study directly utilizes spatial–temporal continuous MODIS data and products, breaking the
spatial–temporal limitations of the data sources. In terms of the research framework, based
on the concepts of the RSEI, this study has provided an integrated approach to assess long-
term ecological environment quality and construct the indicator of ecological resilience for
facilitating regional planning. The improvement of the framework can quickly help detect
dynamic and intuitive ecological environment changes and theoretically conceptualize and
empirically explore the ecological resilience of urban systems.

With the rapid urbanization and economic development in China, the YREBML re-
gion is still facing ecological and environmental challenges such as soil loss, reduction
of wetland areas, degradation of wetland ecosystems, and wastewater pollution. The
results revealed that the overall RSEI was at moderate and good levels in the YREBML. Its
spatial characteristics showed that the RSEI was higher in the middle reaches of the YREB
than in the lower reaches, and higher in the south than in the north. Similar research has
also found that the overall ecological environment rank was mainly neutral and slightly
good in the YREB [43,57]. Climate change, rapid urbanization, population agglomeration,
and industrial clustering would bring greater pressure on the eco-environment [58,59].
Between 2000 and 2020, the ecological environment was better in 2005 and 2010, which
was significantly related to temperature, precipitation, and vegetation cover. Specifically,
the values of SWCI, NDVI, NDSIM, and LST showed increasing, increasing, decreasing,
and increasing trends in 2005, respectively. Therefore, the improvement in the ecological
environment of the YREBML may be influenced by the decrease in the surface bare soil
area, increase in water vapor content, and increase in vegetation cover in 2005. In addition,
the positive effect of the increase of SWCI and NDVI in 2015 was greater than the negative
effect of NDSIM and LST, and the ecological index in this region showed an increasing
trend. However, the RSEI decreased in the middle and lower reaches in 2010 and 2020.
Due to the influence of climate change, urbanization, and human activities, the increase
of urban surface temperatures and bare soil area led to a greater negative effect of NDSIM
and LST than the positive effect of increased SWCI and NDVI. The above phenomenon
indicated that with the increase in the frequency and intensity of extreme climate events, it
would inevitably have a significant impact on the sustainable development of the ecological
environment in the YREBML. Compared with the middle reaches, the lower reaches of
the YREB had greater ecological pressures and faced the problem of ecosystem degrada-
tion, which requires the government to pay attention and take corresponding protection
measures for improving ecological resilience.

Ecological environment quality is influenced by various factors, including the natu-
ral environment and human activities. This study mainly selected the four indicators of
SWCI, NDVI, NDSIM, and LST to detect spatial–temporal changes of eco-environment
quality. Compared with other studies, the optimized NDSIM used the red and green
bands to calculate the building index, which were more sensitive to the built-up land [23].
Moreover, SWCI was more sensitive to humidity. Therefore, the improved NDSIM and
SWCI can better characterize the interactions among the ecosystem factors, and the com-
prehensive ecological index is more representative. The ecological resilience evaluation
method based on the dynamic change of the RSEI can solve the problems of the number
of indicators, the overlap between various indicators, and the lack of objectivity in the
previous resilience assessment research. The driving analysis based on SEM showed that
high-quality economic development, natural disaster risk mitigation, and ecological en-
vironmental protection were key elements to enhance ecological resilience. It indicated
that industrial transformation and industrial structure optimization were required in the
YREBML to achieve high-quality economic development. In terms of natural disaster risk,
the cities should further monitor and assess regional natural disaster risk, and combine
structural and non-structural measures to mitigate this risk. Finally, the government should
increase investment in environmental protection and propose ecological protection policies
to improve ecological environment quality.
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This study proposed an integrated assessment framework that combined the RSEI
and ecological resilience, which can be used for large-scale and long time series ecological
monitoring and resilience management studies, such as wetland ecosystems, mining areas,
and urban systems. However, this study also has some limitations that need to be tackled
in future research. In addition to natural environmental factors, the influence of human
environment factors on ecological resilience should also be considered, such as population,
economic development, building density, regional governance level, and environmental
policies. In terms of uncertainty, it existed in the acquisition of remote sensing data and
data processing processes. As for remotely sensed images acquired by sensors with specific
physical parameters, the complexity of the surface landscape distribution and the size of
the surface cells together directly affected the uncertainty of the remotely sensed data. The
processing of the four indices, including removing clouds and anomalous values, also
increased uncertainty in this study. The number of samples in SEM also further affected
the results of the driver analysis. In addition, the RSEI model should be improved to detect
the eco-environment accurately and provide effective data support for eco-environment
monitoring and management in future research.

5. Conclusions

This study improved the RSEI model based on MODIS data in the YREBML, pro-
moting the scope and scale of model applications. Considering the effect of the four
indicators of NDVI, SWCI, NDSIM, and LST on the eco-environment, this study assessed
spatial–temporal changes of the RSEI and further analyzed spatial patterns of ecological
resilience and its driving factors in the YREBML during 2000–2020. The results showed
that the LST and NDSIM had a negative effect on ecological environment quality; however,
the SWCI and NDVI had a positive effect. The overall RSEI was at moderate and good
levels in the YREBML during 2000–2020, accounting for more than 85% of the total area.
Its spatial characteristics showed that the RSEI was higher in the middle reaches of the
YREB than in the lower reaches, and higher in the south than in the north. In addition,
there was a significantly decreasing trend of RSEI in this region during 2005–2010 and
2015–2020, mainly in Jiangsu, Shanghai, and Anhui. The increased NDSIM and LST and
decreased NDVI had a negative effect on the RSEI, resulting in ecological environment
degradation. Moreover, the spatial pattern of ecological resilience was characterized by
high resilience in the north and east, and low resilience in the south and west, indicating
that economic development, climate change, and human activities would further affect
ecological resilience of urban systems. Economic development had a significant positive
effect on ecological resilience, while natural disaster risk and environmental pollution had
a significant negative effect on resilience. The key path to enhance ecological resilience
depends on promoting economic growth and improving the ecological environment. The
study provided a new evaluation perspective for the comprehensive evaluation of regional
large-scale ecological environment quality based on MODIS data and its spatial and tempo-
ral variation pattern exploration. It also provided data and decision support for ecological
environment monitoring and management.
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