Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index
Abstract
:1. Introduction
- a
- Proposing a new index for extracting the coniferous forest range based on time-series Landsat images.
- b
- Building a monitoring model of infection areas of PWD based on the time-series Landsat images.
- c
- Analyzing the spatio-temporal dynamics of PWD to strengthen the understanding of disaster occurrence and spread.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Survey Data
2.2.2. Remote Sensing Imagery
2.2.3. Other Auxiliary Data
2.3. Method
2.4. Coniferous Forest Extraction Based on Time-Series Landsat Images
2.4.1. Data Analysis and Selection
2.4.2. Extraction of Vegetation Index Time-Series Data
2.4.3. Construction of Normalized Difference Forest Index (NDFI)
2.4.4. Coniferous Forest Information Extraction Based on Time-Series Index Change Analysis
2.5. Monitoring Model of PWD Based on Landsat Imagery
2.5.1. Feature Extraction and Selection
2.5.2. Construction of Monitoring Model
3. Results
3.1. Evaluation of Extraction Accuracy of Coniferous Forest in Anhui Province
3.2. Monitoring of PWD Based on Random Forest
3.3. Disease Degree Analysis
4. Discussion
4.1. Effectiveness and Feasibility of NDFI for Extracting Coniferous Forest Distributions
4.2. Practicability and Popularization of Periodic Monitoring of PWD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Liang, J.; Yan, D.H.; Zhang, X.Y. Research advances of pine wood nematode disease in China. World For. Res. 2010, 23, 59–63. [Google Scholar]
- Lv, Q.; Wang, W.D.; Liang, J.; Yan, D.H.; Jia, X.Z.; Zhang, X.Y. Potential suitability assessment of Bursaphelenchus xylophilus in China. For. Res. 2005, 18, 460–464. [Google Scholar]
- Morimoto, K.; Iwasaki, A. Role of Monochamus alternatus (Coleoptera: Cerambycidae) as a vector of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae). J. Jpn. For. Soc. 1972, 54, 177–183. [Google Scholar]
- Hu, Y.Q.; Kong, X.C.; Wang, X.R.; Zhong, T.K.; Zhu, X.W.; Mota, M.M.; Ren, L.L.; Liu, S.; Ma, C. Direct PCR-based method for detecting Bursaphelenchus xylophilus, the pine wood nematode in wood tissue of Pinus massoniana. For. Pathol. 2011, 41, 165–168. [Google Scholar] [CrossRef]
- Zhao, J. Harm and control measures of Bursaphelenchus xylophilus. Anhui Agric. Sci. Bull. 2010, 16, 107–121. [Google Scholar]
- National Forestry and Grassland Administration. Announcement of the National Forestry and Grassland Administration. All That Pinewood Nematode Stuff. Available online: https://www.forestry.gov.cn/ma-in/5462/20210521/114505021470794.html (accessed on 21 May 2021).
- Pimentel, C.; Gonçalves, E.; Firmino, P.; Calvao, T.; Fonseca, L.; Abrantes, I.; Correia, O.; Maguas, C. Differences in constitutive and inducible defenses in pine species determining susceptibility to pinewood nematode. Plant Pathol. 2017, 66, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Teresa, C.; Claudio, M.; Pimentel, C. Climate and landscape patterns of pine forest decline after invasion by the pinewood nematode. For. Ecol. Manag. 2019, 433, 43–51. [Google Scholar]
- Yan, X.; Zhen, Y.L.; Gregg, W.P. Invasive species in China—An overview. Biodivers. Conserv. 2001, 10, 1317–1341. [Google Scholar] [CrossRef]
- Chen, Y.H.; Ye, J.R.; Wei, C.J. Research advances in diagnosis of pine nematode wilt disease caused by Bursaphelenchus xylophilus. J. Nanjing For. Univ. 2001, 25, 83–87. [Google Scholar]
- Meng, J.F. Occurrence regularity and control techniques of pine wood nematode disease. Contemp. Hortic. 2021, 44, 100–101. [Google Scholar]
- Fassnacht, F.E.; Latifi, H.; Sterenczak, K. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Chen, F.M.; Tang, J.; Ye, J.R. Identification methods and evaluation of pine wood nematode disease (review). J. Anhui Agric. Univ. 2005, 1, 22–25. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Meng, X.J.; Zhang, S.H.; Xue, Y.D.; Liu, X.K.; Xing, P. Application evaluation of BJ3 Satellite Data in Remote Sensing Monitoring of Pine Wilt Disease. For. Resour. Manag. 2022, 4, 126–133. [Google Scholar]
- Qin, J. Deep Learning Based Multi-Platform Remote Sensing Method for Pine Wood Nematode Disease Monitoring; Anhui University of China: Hefei, China, 2021. [Google Scholar]
- Tao, H.; Li, C.J.; Cheng, C.; Jiang, L.Y.; Hu, H.T. Progress in Remote Sensing Monitoring for Pine Wilt Disease Induced Tree Mortality: A Review. For. Res. 2020, 33, 172–183. [Google Scholar]
- Cheng, G.R. Development Direction and Strategy of Sustainable Forest Management in Anhui Province under the New Situation. For. Resour. Manag. 2016, 4, 24–29. [Google Scholar]
- Zhou, M. Analysis on dynamic changes of forest resources in Anhui province based on forest resources inventory system. Anhui For. Sci. Technol. 2018, 44, 44–46. [Google Scholar]
- Dan, D.J.; Huang, Y. Occurrence actualities of pinewood nematodiasis in Huoshan County and targeted control measures. Anhui For. Sci. Technol. 2019, 45, 54–56. [Google Scholar]
- Ma, Q.; Ma, P. Transmission route, harm and control of pine wilt disease. Farming Staff. 2022, 4, 150–152. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; No. E75–10354; NASA: Washington, DC, USA, 1974.
- Demetriades, T.H.; Steven, M.D.; Clark, J.A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens. Environ. 1972, 355, 1355. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Maki, M.; Ishiahra, M.; Tamura, M. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens. Environ. 2004, 90, 441–450. [Google Scholar] [CrossRef]
- Hu, J.J.; Chen, J.; Peng, S. Hot-spot analysis of GlobeLand30 data studying. Remote Sens. Inf. 2018, 33, 1–7. [Google Scholar]
- Gu, X.H.; Zhang, Y.; Sang, H.Y.; Zhai, L.; Li, S.J. Research on crop classification method based on Sentinel-2 time series combined vegetation index. Remote Sens. Technol. Appl. 2020, 35, 702–711. [Google Scholar]
- Pettorelli, N.; Vik, J.; Mysterud, A.; Gaillard, J.; Tucker, C.; Stenseth, N. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Coops, N.; Johnson, M.; Wulder, M.; White, J. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.; Sader, S. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Rock, B.; Vogelmann, J.; Williams, D. Field and airborne spectral characterization of suspected damage in red spruce (picea rubens) from Vermont. In Proceedings of the Machine Processing Remotely Sensed Data Symposium, Pasadena, CA, USA, 1 January 1985. [Google Scholar]
- Liang, L.; Hawbaker, T.; Chen, Y.L.; Zhu, Z.L.; Gong, P. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains. Appl. Geogr. 2014, 55, 165–175. [Google Scholar] [CrossRef]
- Skakun, R.; Wulder, M.; Franklin, S. Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage. Remote Sens. Environ. 2003, 86, 433–443. [Google Scholar] [CrossRef]
- Tian, Y.F.; Zhang, Z.; Zhu, X.P. Two Important Problems in Analysis of Variance and Their Solutions. Stat. Decis.-Mak. 2013, 16, 7–9. [Google Scholar]
- Yao, D.J.; Yang, J.; Zhan, X.J. Feature selection algorithm based on random forest. J. Jilin Univ. (Eng. Technol. Ed.) 2014, 44, 137–141. [Google Scholar]
- Kanjo, E.; Younis, E.; Ang, C. Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection. Inf. Fusion 2019, 49, 46–56. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A. Tong, C.; Culberson, J. Random Forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Huang, F.F.; Lei, M.; Zhang, L.; Liu, X. Monitoring method of pine wood nematode disease based on random forest and decision tree. Inf. Commun. 2019, 12, 32–36. [Google Scholar]
- Mamiya, Y. Population increase of Bursaphelenchus lignicolus in wood of pine seedlings in relation with the time after inoculation. For. Soc. 1974, 249–251. [Google Scholar]
- Hao, Z.Q.; Huang, J.X.; Li, X.D.; Sun, H.; Fang, G.F. A multi-point aggregation trend of the outbreak of pine wilt disease in China over the past 20 years. For. Ecol. Manag. 2022, 505, 119890. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.Y.; Ma, G.F.; Cao, N.; Ma, L.W. Analysis on spring wheat spectrum characteristics influenced by dry-hot wind in Ningxia. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2012, 28, 189–199. [Google Scholar]
- Zhang, J.H.; Wang, K. New vegetation index for estimating nitrogen concentration using fresh leaf spectral reflectance. J. Agric. Eng. 2008, 3, 158–161. [Google Scholar]
- Sutherst, R. Climate change and invasive species: A conceptual framework. In Invasive Species in a Changing World; Island Press: Washington, DC, USA, 2000; pp. 211–240. [Google Scholar]
- Mantas, V.; Fonseca, L.; Baltazar, E.; Canhoto, J.; Abrantes, I. Detection of Tree Decline (Pinus pinaster Aiton) in European Forests Using Sentinel-2 Data. Remote Sens. 2022, 14, 2028. [Google Scholar] [CrossRef]
Forest Types | Example | Description |
---|---|---|
Coniferous forest | Most of them are distributed in sheets, with uniform tone of dark green and clear boundary with other woodlands | |
Other forests | Chaotic shape and uneven tone |
Index | Formula | Reference |
---|---|---|
NDVI | Rouse et al. [22] | |
DVI | Demetriades et al. [23] | |
RVI | Pearson et al. [24] | |
SAVI | Huete et al. [25] | |
LSWI | Maki et al. [26] |
Feature | Mean Decrease Accuracy | Mean Decrease Gini |
---|---|---|
Elevation | 88.20875 | 38.609919 |
MSI | 38.38783 | 16.877994 |
NBR | 36.80615 | 15.824209 |
B2 | 47.7794 | 14.303737 |
RGI | 41.53761 | 13.566015 |
NDMI | 28.44070 | 12.623385 |
Aspect | 38.16040 | 11.632085 |
COR29 | 30.11671 | 9.689533 |
COR65 | 25.90826 | 9.26472 |
TCW8 | 29.65953 | 8.234906 |
Forest Type | Coniferous Forest | Other Forests | Total | General Classification Accuracy (%) | Kappa Coefficient |
---|---|---|---|---|---|
Coniferous Forest | 870 | 130 | 1000 | 87.75 | 0.755 |
Other Forests | 115 | 885 | 1000 | ||
Total | 985 | 1015 | 2000 |
Year | Area of Coniferous Forest Compartment in the Forest Management Inventory (ha) | Area of Coniferous Forest Extracted in This Paper (ha) | Relative Error (%) |
---|---|---|---|
2020 | 1,046,586 | 963,495 | 7.93 |
Year | Statistical Area (ha) | Monitoring Area (ha) | Relative Error (%) |
---|---|---|---|
2018 | 20,820 | 26,871 | 29.06 |
2019 | 110,000 | 137,772 | 25.24 |
2020 | 101,333 | 128,142 | 26.45 |
2021 | 92,700 | 115,274 | 24.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, L.; Chen, Y.; Song, S.; Zhang, X.; Jia, X.; Lu, Y.; Liu, G. Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index. Remote Sens. 2023, 15, 360. https://doi.org/10.3390/rs15020360
Long L, Chen Y, Song S, Zhang X, Jia X, Lu Y, Liu G. Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index. Remote Sensing. 2023; 15(2):360. https://doi.org/10.3390/rs15020360
Chicago/Turabian StyleLong, Lin, Yuanyuan Chen, Shaojun Song, Xiaoli Zhang, Xiang Jia, Yagang Lu, and Gao Liu. 2023. "Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index" Remote Sensing 15, no. 2: 360. https://doi.org/10.3390/rs15020360
APA StyleLong, L., Chen, Y., Song, S., Zhang, X., Jia, X., Lu, Y., & Liu, G. (2023). Remote Sensing Monitoring of Pine Wilt Disease Based on Time-Series Remote Sensing Index. Remote Sensing, 15(2), 360. https://doi.org/10.3390/rs15020360