Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Lubrecht Experimental Forest
2.1.2. Sycan Marsh Preserve—Forest
2.1.3. Tate’s Hell State Forest
2.2. Sampling Design and Processing
2.2.1. Close-Range Photogrammetry
2.2.2. Voxel-Based Field Inventory and Destructive Sampling
2.3. Point Cloud Metrics
2.3.1. Occupied Volume
2.3.2. Fuel Height
2.3.3. Projected Area Density and Projected Area Density-Vertical
2.3.4. Surface Area and Volume
2.4. Fuel Typing
2.5. Accuracy Assessment and Analysis
3. Results
3.1. Point Cloud Metrics
3.2. Comparison of Point Cloud Metrics to Field Data
3.3. Modeling Biomass with Photogrammetry Metrics
3.3.1. Grass-Dominated Plots
3.3.2. Shrub-Dominated Plots
3.3.3. Global Model
3.3.4. Global Model with Fuel Type
4. Discussion
4.1. How Well Do Photogrammetric Point Clouds Characterize Fuel Structure Compared to Field Sampling?
4.2. Can Measures of Fuel Structure from Photogrammetric Point Clouds Be Used to Develop Predictive Models of Biomass?
4.3. How Generalizable Are These Models across Different Fuel Complexes and Forest Types?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Wang, T.; Hou, Z.; Gong, Y.; Feng, L.; Ge, J. Harnessing terrestrial laser scanning to predict understory biomass in temperate mixed forests. Ecol. Indic. 2021, 121, 107011. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Vierling, L.A.; Gould, W.A.; Falkowski, M.J.; Evans, J.S.; Hudak, A.T.; Vierling, K.T. Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens. Environ. 2009, 113, 2533–2546. [Google Scholar] [CrossRef]
- Moore, P.T.; Van Miegroet, H.; Nicholas, N.S. Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce–fir forest AES Publication 7863. Utah Agricultural Experiment Station, Utah State University, Logan, Utah. Can. J. For. Res. 2007, 37, 2689–2700. [Google Scholar] [CrossRef]
- Muir, P.S.; Mattingly, R.L.; Tappeiner, J.C., II; Bailey, J.D.; Elliott, W.E.; Hagar, J.C.; Miller, J.C.; Peterson, E.B.; Starkey, E.E. Managing for Biodiversity in Young Douglas-Fir Forests of Western Oregon (Biological Science Report); U.S. Geological Survey: Reston, VA, USA; Forest and Rangeland Ecosystem Science Center: Corvallis, OR, USA, 2002. [Google Scholar]
- Kerns, B.K.; Ohmann, J.L. Evaluation and prediction of shrub cover in coastal Oregon forests (USA). Ecol. Indic. 2004, 4, 83–98. [Google Scholar] [CrossRef]
- Powell, T.L.; Gholz, H.L.; Clark, K.L.; Starr, G.; Cropper, W.P., Jr.; Martin, T.A. Carbon exchange of a mature, naturally regenerated pine forest in north Florida. Glob. Change Biol. 2008, 14, 2523–2538. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Grego, J.M.; Loudermilk, E.L. The wildland fuel cell concept: An approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests. Int. J. Wildland Fire 2009, 18, 315–325. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Singhania, A.; Fernandez, J.C.; Cropper, W.P.; Slatton, K.C. Ground-based LIDAR: A novel approach to quantify fine-scale fuelbed characteristics. Int. J. Wildland Fire 2009, 18, 676–685. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; O’Brien, J.J.; Mitchell, R.J.; Cropper, W.P.; Hiers, J.K.; Grunwald, S.; Grego, J.; Fernandez-Diaz, J.C. Linking complex forest fuel structure and fire behaviour at fine scales. Int. J. Wildland Fire 2012, 21, 882. [Google Scholar] [CrossRef]
- Agee, J. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Mitchell, R.J.; Hiers, J.K.; O’Brien, J.; Starr, G. Ecological forestry in the Southeast: Understanding the ecology of fuels. J. For. 2009, 107, 391–397. [Google Scholar]
- Keane, R.E. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems. Int. J. Wildland Fire 2009, 22, 51–62. [Google Scholar] [CrossRef]
- Wright, C.; Vilnakek, R.; Ottmar, R.; Eagle, P. Digital Photo Series (Natural Fuels Photo Series). JFSP Res. Proj. Rep. 2007; 116. [Google Scholar]
- Brown, J.K.; Oberheu, R.D.; Johnston, C.M. Handbook for Inventorying Surface Fuels and Biomass in the Interior West (No. INT-GTR-129); U.S. Department of Agriculture: Washington, DC, USA; Forest Service: Washington, DC, USA; Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Meddens, A.J.H.; Hawbaker, T.J.; Briggs, J.S.; Kennedy, R.E. Prediction of Forest Canopy and Surface Fuels from Lidar and Satellite Time Series Data in a Bark Beetle-Affected Forest. Forests 2017, 8, 322. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.; et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial LiDAR technology in forest science: Application Fields, Benefits and Challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Rowell, E.; Loudermilk, E.L.; Hawley, C.; Pokswinski, S.; Seielstad, C.; Queen, L.L.; O’Brien, J.J.; Hudak, A.T.; Goodrick, S.; Hiers, J.K. Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. For. Ecol. Manag. 2020, 462, 117945. [Google Scholar] [CrossRef]
- Bright, B.C.; Loudermilk, E.L.; Pokswinski, S.M.; Hudak, A.T.; O’Brien, J.J. Introducing Close-Range Photogrammetry for Characterizing Forest Understory Plant Diversity and Surface Fuel Structure at Fine Scales. Can. J. Remote Sens. 2016, 42, 460–472. [Google Scholar] [CrossRef]
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial Structure from Motion Photogrammetry for Deriving Forest Inventory Data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef]
- Wallace, L.; Hillman, S.; Reinke, K.; Hally, B. Non-destructive estimation of above-ground surface and near-surface biomass using 3D terrestrial remote sensing techniques. Methods Ecol. Evol. 2017, 8, 1607–1616. [Google Scholar] [CrossRef]
- Wallace, L.; Hally, B.; Hillman, S.; Jones, S.D.; Reinke, K. Terrestrial Image-Based Point Clouds for Mapping Near-Ground Vegetation Structure: Potential and Limitations. Fire 2020, 3, 59. [Google Scholar] [CrossRef]
- Churchill, D.; Jeronimo, S.; Larson, A.; Fischer, P.; Dahlgreen, M.; Franklin, J. The ICO Approach to Quantifying and Restoring Forest Spatial Pattern: Implementation Guide. ICO App. 2016, 3. [Google Scholar]
- Roussel, J.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Bourdon, J.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. of Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Roussel, J.; Auty, D. Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. R package version 4.0.1. 2022. Available online: https://cran.r-project.org/package=lidR (accessed on 20 May 2022).
- Hawley, C.M.; Loudermilk, E.L.; Rowell, E.M.; Pokswinski, S. A novel approach to fuel biomass sampling for 3D fuel characterization. MethodsX 2018, 5, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computer; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org/ (accessed on 1 February 2021).
- Hudak, A.T.; Kato, A.; Bright, B.C.; Loudermilk, E.L.; Hawley, C.; Restaino, J.C.; Ottmar, R.D.; Prata, G.A.; Cabo, C.; Prichard, S.J.; et al. Towards Spatially Explicit Quantification of Pre- and Postfire Fuels and Fuel Consumption from Traditional and Point Cloud Measurements. For. Sci. 2020, 66, 428–442. [Google Scholar] [CrossRef]
- Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Hosoi, F.; Omasa, K. Estimation of vertical plant area density profiles in a rice canopy at different growth stages by high-resolution portable scanning lidar with a lightweight mirror. ISPRS J. Photogramm. Remote Sens. 2012, 74, 11–19. [Google Scholar] [CrossRef]
- Lecigne, B. VoxR: Trees Geometry and Morphology from Unstructure TLS Data. R package version 1.0.0. 2020. Available online: https://cran.r-project.org/package=VoxR (accessed on 21 February 2021).
- Roussel, J.; Barber, C.B.; Habel, K.; Grasman, R.; Gramacy, R.B.; Mozharovskyi, S.D. Geometry: Mesh Generation and Surface Tessellation. R package version 0.4.6.1. 2022. Available online: http://cran.r-project.org/package=geometry (accessed on 21 February 2021).
- Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.R. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 88, 166–173. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 9, 716–723. [Google Scholar] [CrossRef]
- Cooper, S.D.; Roy, D.P.; Schaaf, C.B.; Paynter, I. Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass. Remote Sens. 2017, 9, 531. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Hosoi, F.; Omasa, K. Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3610–3618. [Google Scholar] [CrossRef]
- Hosoi, F.; Omasa, K. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS J. Photogramm. Remote Sens. 2009, 64, 151–158. [Google Scholar] [CrossRef]
- Poley, L.G.; Laskin, D.N.; McDermid, G.J. Quantifying Aboveground Biomass of Shrubs Using Spectral and Structural Metrics Derived from UAS Imagery. Remote Sens. 2020, 12, 2199. [Google Scholar] [CrossRef]
- Anderson, K.E.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K.; Derryberry, D.R. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning. Ecol. Indic. 2018, 84, 793–802. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J. The role of fuels for understanding fire behavior and fire effects. In Ecological Restoration and Management of Longleaf Pine Forests; CRC Press: Boca Raton, FL, USA; Taylor Francis Group: Abingdon, UK, 2018; pp. 107–122. [Google Scholar]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; U.S. Department of Agriculture: Washington, DC, USA; Forest Service: Washington, DC, USA; Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 72. [Google Scholar] [CrossRef]
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the Fuel Characteristic Classification System—Quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Olsoy, P.J.; Forbey, J.S.; Rachlow, J.L.; Nobler, J.D.; Glenn, N.F.; Shipley, L.A. Fearscapes: Mapping Functional Properties of Cover for Prey with Terrestrial LiDAR. BioScience 2015, 65, 74–80. [Google Scholar] [CrossRef]
- Li, A.; Dhakal, S.; Glenn, N.F.; Spaete, L.P.; Shinneman, D.J.; Pilliod, D.S.; Arkle, R.S.; McIlroy, S.K. Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales. Remote Sens. 2017, 9, 903. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Salas, J.; Danson, F.M. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sens. Environ. 2011, 115, 1369–1379. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Stavros, E.; Coen, J.; Peterson, B.; Singh, H.; Kennedy, K.; Ramirez, C.; Schimel, D. Use of Imaging Spectroscopy and LIDAR to Characterize Fuels for Fire Behavior Prediction. Remote Sens. Appl. Soc. Environ. 2018, 11, 41–50. [Google Scholar] [CrossRef]
- Rowell, E.; Loudermilk, E.L.; Seielstad, C.; O’Brien, J. Using simulated 3D surface fuelbeds and terrestrial laser scan data to develop inputs to fire behavior models. Can. J. Remote Sens. 2016, 42, 443–459. [Google Scholar] [CrossRef]
Metric | Shorthand | Definition/Description | |
---|---|---|---|
Photogrammetry | |||
Fuel height | SfM Height | Mean value across the 99th percentile height of all points within each vertical voxel column (25 columns total, where each column is 10 cm in the horizontal x and y directions, 100 cm in the vertical z) | |
Occupied volume | SfM OV | Total n occupied 10 cm3 voxels divided by total possible voxels (n = 250) | |
Projected areadensity | SfM PAD | Total n occupied voxels when only voxelization in the x and y directions is considered; akin to a top-down view of each plot to assess horizontal continuity. Calculated at a 1 cm3 resolution. | |
Projected area density—vertical | SfM PADV | Total n occupied voxels when only voxelization in the x and z is considered; akin to a side view of each plot to assess horizontal and vertical continuity. Calculated at a 1 cm3 resolution. | |
Surface area | SfM SA | Surface area of the smallest minimum-bounding shell (hull) of facets over all points greater than 10 cm in height | |
Volume | SfM Vol | Volume of the interior 3D hull generated from surface area calculation | |
Field Sampling | |||
Fuel height | Field Height | Mean value of the maximum occupied height of each vertical voxel column (25 columns total, where each column is made of vertical stacks of 10 cm3 voxels with the same x and y position) | |
Occupied volume | Field OV | Total n occupied 10 cm3 voxels divided by total possible voxels (n = 250) |
Linear Regressions of Individual Photogrammetry Metrics to Plot Biomass above 10 cm | |||
---|---|---|---|
Grass Models (Grass/Forb-Dominated Plots, n = 42) | |||
Predictor metric | R2 | MAE | RMSE (g) (%) |
Fuel Height (SfM Height) | 0.68 | 14.75 | 23.90 (88) |
Occupied Volume (SfM OV) | 0.75 | 13.29 | 20.49 (76) |
Projected Area Density (SfM PAD) * | N/A | 31.43 | 41.35 (153) |
Projected Area Density Vertical (SfM PADV) | 0.74 | 13.63 | 21.24 (78) |
Surface Area (SfM SA) | 0.70 | 16.74 | 22.12 (82) |
Volume (SfM Volume) | 0.76 | 12.36 | 19.90 (74) |
Shrub Models (Shrub-Dominated Plots, n = 79) | |||
Predictor metric | R2 | MAE | RMSE (g) (%) |
Fuel Height (SfM Height) | 0.51 | 24.62 | 32.27 (48) |
Occupied Volume (SfM OV) | 0.55 | 23.25 | 31.09 (46) |
Projected Area Density (SfM PAD) | 0.01 | 37.52 | 46.12 (68) |
Projected Area Density Vertical (SfM PADV) | 0.54 | 23.55 | 31.43 (46) |
Surface Area (SfM SA) | 0.51 | 24.11 | 32.13 (47) |
Volume (SfM Volume) | 0.52 | 24.39 | 32.05 (47) |
Global Models (All Plots, n = 138) | |||
Predictor metric | R2 | MAE | RMSE (g) (%) |
Fuel Height (SfM Height) | 0.66 | 19.78 | 28.11 (60) |
Occupied Volume (SfM OV) | 0.71 | 17.93 | 26.09 (56) |
Projected Area Density (SfM PAD) | 0.05 | 38.03 | 47.18 (100) |
Projected Area Density Vertical (SfM PADV) | 0.71 | 17.83 | 26.09 (56) |
Surface Area (SfM SA) | 0.67 | 20.08 | 27.70 (59) |
Volume (SfM Volume) | 0.69 | 19.02 | 27.07 (58) |
Plot Biomass (10 to 100 cm) by Site | |||
---|---|---|---|
Site (n) | Range | Mean | Std. Dev. |
Lubrecht (42) | 0–129.72 g | 10.49 g | 25.13 g |
Sycan Marsh—Forest (14) | 0–119.12 g | 21.63 g | 35.55 g |
Tate’s Hell A (44) | 5.91–151.94 g | 63.65 g | 38.89 g |
Tate’s Hell B (38) | 0.56–214.82 g | 76.92 g | 52.73 g |
All sites | 0–214.82 g | 46.86 g | 48.44 g |
Plot biomass (10 to 100 cm) by dominant fuel type | |||
Dominant fuel type (n) | Range | Mean | Std. Dev. |
Grass (42) | 0–143.25 g | 27.06 g | 40.85 g |
Shrub (79) | 0.67–214.82 g | 67.73 g | 46.56 g |
Long needle pine (18) | 0–18.15 g | 2.61 g | 5.09 g |
All fuel types | 0–214.82 g | 46.86 g | 48.44 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cova, G.R.; Prichard, S.J.; Rowell, E.; Drye, B.; Eagle, P.; Kennedy, M.C.; Nemens, D.G. Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests. Remote Sens. 2023, 15, 4837. https://doi.org/10.3390/rs15194837
Cova GR, Prichard SJ, Rowell E, Drye B, Eagle P, Kennedy MC, Nemens DG. Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests. Remote Sensing. 2023; 15(19):4837. https://doi.org/10.3390/rs15194837
Chicago/Turabian StyleCova, Gina R., Susan J. Prichard, Eric Rowell, Brian Drye, Paige Eagle, Maureen C. Kennedy, and Deborah G. Nemens. 2023. "Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests" Remote Sensing 15, no. 19: 4837. https://doi.org/10.3390/rs15194837
APA StyleCova, G. R., Prichard, S. J., Rowell, E., Drye, B., Eagle, P., Kennedy, M. C., & Nemens, D. G. (2023). Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests. Remote Sensing, 15(19), 4837. https://doi.org/10.3390/rs15194837