Mapping Soybean Maturity and Biochemical Traits Using UAV-Based Hyperspectral Images
Abstract
:1. Introduction
- (1)
- What are the variations in soybean LCC, NBI, and Flav across the five growth stages and how are they related to soybean maturity?
- (2)
- Can methodologies combining remote sensing (RS) with Gaussian process regression (GPR), partial least squares regression (PLSR), and RF provide accurate estimations of soybean LCC, NBI, and Flav?
- (3)
- Can a threshold-based approach combined with NDVI+LCC and NDVI+NBI facilitate the remote sensing monitoring of soybean maturity?
2. Materials and Methods
2.1. Field Experimentation
2.1.1. Design of Field Experiments
2.1.2. Field LCC, Flav, and NBI Measurements
2.2. Hyperspectral DOM
2.2.1. UAV Flights
2.2.2. UAV DOM Stitching
2.3. Vegetation Index and Statistical Regression Techniques
2.4. Methods for Soybean Maturity Assessment
2.4.1. Artificial Methods for Determining Soybean Maturity
2.4.2. Histogram and Box Plot Analysis Techniques for Determining the Range of LCC and NBI in Mature Soybeans
2.4.3. Optimal Threshold Determination for Soybean Maturation Based on NDVI+NBI and NDVI+LCC
2.5. Accuracy Evaluation Techniques
3. Results
3.1. Assessment of Soil and Soybean Canopy Spectral and Physiological Characteristics
3.1.1. Analysis of Physiological Parameters in the Soybean Canopy
3.1.2. Analysis of Soil and Soybean Canopy Spectra, FD Spectra, and Vegetation Indices
3.2. Estimation of LCC, Flav, and NBI Indices
3.2.1. Remote Sensing Estimation of LCC, Flav, and NBI Indices
3.2.2. Remote Sensing Mapping of LCC, Flav, and NBI Indices
3.3. Estimation and Evaluation of Crop Maturity Calculation and Mapping
4. Discussion
4.1. Multi-Temporal LCC, NBI, and Flav Features and Soybean Maturity
4.2. Advantages and Uncertainty of this Work
5. Conclusions
- (1)
- Our results demonstrate that a direct relationship exists between (i) soybean LCC, NBI, Flav, and (ii) maturity (Figure 7 and Figure 8). During the P1 to P3 stages, LCC consistently increases, followed by a rapid decline during the P4 stage. Flav showed a consistent increase from the P1 to P4 stages. NBI shows relatively consistent levels during the P1 to P3 stages, followed by a rapid decrease during the P4 (mature) stage.
- (2)
- The soybean LCC, Flav, and NBI can be properly estimated using (a) UAV hyperspectral and (b) GPR, PLSR, and RF models. The GPR, PLSR, and RF models yield similar soybean LCC (R2: 0.737–0.832, RMSE: 3.35–4.202 Dualex readings), Flav (R2: 0.321–0.461, RMSE: 0.13–0.145 Dualex readings), and NBI (R2: 0.758–0.797, RMSE: 2.922–3.229 Dualex readings) estimates (Figure 6). The LCC, Flav, and NBI maps based on the GPR model (Figure 7 and Figure 8) are consistent with the field measurement analysis shown in Figure 2.
- (3)
- This study demonstrates that crop maturity can be accurately evaluated through combining UAV hyperspectral, GPR, and threshold methods. For the NDVI+NBI method, the combination of NDVI < 0.55 + NBI < 8.2 achieved the highest overall accuracy in monitoring soybean maturity (overall accuracy = 0.934, producer accuracy = 0.934, user accuracy = 0.915, Figure 10 and Table 4). For the NDVI+LCC method, the combination of NDVI < 0.55 + NBI < 9 achieved the highest overall soybean maturity monitoring accuracy (overall accuracy = 0.914, producer accuracy = 0.929, user accuracy = 0.881, Table 4).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, P.; Wang, T.; Luo, Y. A Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Vogel, J.T.; Liu, W.; Olhoft, P.; Crafts-Brandner, S.J.; Pennycooke, J.C.; Christiansen, N. Soybean Yield Formation Physiology—A Foundation for Precision Breeding Based Improvement. Front. Plant Sci. 2021, 12, 719706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Li, Y.; Chen, W.F.; Wang, E.T.; Tian, C.F.; Li, Q.Q.; Zhang, Y.Z.; Sui, X.H.; Chen, W.X. Biodiversity and Biogeography of Rhizobia Associated with Soybean Plants Grown in the North China Plain. Appl. Environ. Microbiol. 2011, 77, 6331–6342. [Google Scholar] [CrossRef] [PubMed]
- Volpato, L.; Dobbels, A.; Borem, A.; Lorenz, A.J. Optimization of Temporal UAS-Based Imagery Analysis to Estimate Plant Maturity Date for Soybean Breeding. Plant Phenome J. 2021, 4, e20018. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Yang, G.; Fu, Y.; Wang, H.; Zhou, C. Estimating Vertically Growing Crop Above-Ground Biomass Based on UAV Remote Sensing. Comput. Electron. Agric. 2023, 205, 107627. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Yue, J.; Tian, J.; Philpot, W.; Tian, Q.; Feng, H.; Fu, Y. VNAI-NDVI-Space and Polar Coordinate Method for Assessing Crop Leaf Chlorophyll Content and Fractional Cover. Comput. Electron. Agric. 2023, 207, 107758. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, H.; Han, S.; Shi, Z.; Xu, H.; Liu, Y.; Feng, H.; Zhou, C.; Yue, J. Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning. Agriculture 2022, 13, 110. [Google Scholar] [CrossRef]
- Akhtman, Y.; Golubeva, E.I.; Tutubalina, O.V.; Zimin, M. Application of Hyperspectural Images and Ground Data for Precision Farming. Geogr. Environ. Sustain. 2017, 10, 117–128. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Feng, H.; Han, S.; Zhou, C.; Fu, Y.; Guo, W.; Ma, X.; Qiao, H.; Yang, G. Hyperspectral-to-Image Transform and CNN Transfer Learning Enhancing Soybean LCC Estimation. Comput. Electron. Agric. 2023, 211, 108011. [Google Scholar] [CrossRef]
- Yu, F.H.; Xu, T.Y.; Du, W.; Ma, H.; Zhang, G.S.; Chen, C.L. Radiative Transfer Models (RTMs) for Field Phenotyping Inversion of Rice Based on UAV Hyperspectral Remote Sensing. Int. J. Agric. Biol. Eng. 2017, 10, 150–157. [Google Scholar] [CrossRef]
- Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining Spectral and Textural Information from UAV RGB Images for Leaf Area Index Monitoring in Kiwifruit Orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
- Yang, J.; Xing, M.; Tan, Q.; Shang, J.; Song, Y.; Ni, X.; Wang, J.; Xu, M. Estimating Effective Leaf Area Index of Winter Wheat Based on UAV Point Cloud Data. Drones 2023, 7, 299. [Google Scholar] [CrossRef]
- Santos-Rufo, A.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Meroño-Larriva, J.E. Wavelength Selection Method Based on Partial Least Square from Hyperspectral Unmanned Aerial Vehicle Orthomosaic of Irrigated Olive Orchards. Remote Sens. 2020, 12, 3426. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982-2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring Vegetation Phenology Using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping Winter-Wheat Biomass and Grain Yield Based on a Crop Model and UAV Remote Sensing. Int. J. Remote Sens. 2021, 42, 1577–1601. [Google Scholar] [CrossRef]
- Curnel, Y.; de Wit, A.J.W.; Duveiller, G.; Defourny, P. Potential Performances of Remotely Sensed LAI Assimilation in WOFOST Model Based on an OSS Experiment. Agric. For. Meteorol. 2011, 151, 1843–1855. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef]
- Wang, J.; Si, H.; Gao, Z.; Shi, L. Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products. Agric. 2022, 12, 1707. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Zhang, J.; Feng, J. Iterative Spectral Unmixing for Optimizing Per-Pixel Endmember Sets. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3725–3736. [Google Scholar] [CrossRef]
- Cong, N.; Piao, S.; Chen, A.; Wang, X.; Lin, X.; Chen, S.; Han, S.; Zhou, G.; Zhang, X. Spring Vegetation Green-up Date in China Inferred from SPOT NDVI Data: A Multiple Model Analysis. Agric. For. Meteorol. 2012, 165, 104–113. [Google Scholar] [CrossRef]
- Jin, X.; Li, Z.; Yang, G.; Yang, H.; Feng, H.; Xu, X.; Wang, J.; Li, X.; Luo, J. Winter Wheat Yield Estimation Based on Multi-Source Medium Resolution Optical and Radar Imaging Data and the AquaCrop Model Using the Particle Swarm Optimization Algorithm. ISPRS J. Photogramm. Remote Sens. 2017, 126, 24–37. [Google Scholar] [CrossRef]
- Lorite, I.J.; García-Vila, M.; Santos, C.; Ruiz-Ramos, M.; Fereres, E. AquaData and AquaGIS: Two Computer Utilities for Temporal and Spatial Simulations of Water-Limited Yield with AquaCrop. Comput. Electron. Agric. 2013, 96, 227–237. [Google Scholar] [CrossRef]
- Xu, K.; Tian, Q.; Yang, Y.; Yue, J.; Tang, S. How Up-Scaling of Remote-Sensing Images Affects Land-Cover Classification by Comparison with Multiscale Satellite Images. Int. J. Remote Sens. 2019, 40, 2784–2810. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, H.; Xu, Z.; Hu, J.; Shi, X.; Hua, S.; Yue, J.; Yang, G. Estimating Maize-Leaf Coverage in Field Conditions by Applying a Machine Learning Algorithm to UAV Remote Sensing Images. Appl. Sci. 2019, 9, 2389. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, J.; Xu, Z.; Yue, J.; Ye, H.; Yang, G. A Monitoring System for the Segmentation and Grading of Broccoli Head Based on Deep Learning and Neural Networks. Front. Plant Sci. 2020, 11, 402. [Google Scholar] [CrossRef]
- Sahu, P.; Chug, A.; Singh, A.P.; Singh, D.; Singh, R.P. Deep Learning Models for Beans Crop Diseases: Classification and Visualization Techniques. Int. J. Mod. Agric. 2021, 10, 796–812. [Google Scholar]
- Zhong, L.; Hu, L.; Zhou, H. Deep Learning Based Multi-Temporal Crop Classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A Review on Deep Learning in UAV Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Huang, W. Fundamental and Application of Quantitative Remote Sensing in Agriculture; Science China Press: Beijing, China, 2008. [Google Scholar]
- Nürnberg, D.J.; Morton, J.; Santabarbara, S.; Telfer, A.; Joliot, P.; Antonaru, L.A.; Ruban, A.V.; Cardona, T.; Krausz, E.; Boussac, A.; et al. Photochemistry beyond the Red Limit in Chlorophyll f–Containing Photosystems. Science 2018, 360, 1210–1213. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Qian, X.; Zhu, Y.; Shen, G. Quantification of Rice Canopy Nitrogen Balance Index with Digital Imagery from Unmanned Aerial Vehicle. Remote Sens. Lett. 2015, 6, 183–189. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Okains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1973, 1, 325–333. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Adjusted Vegetation Index (MSAVI). Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Hunt, E.R.; Dean Hively, W.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.R.E.; Thompson, T.; Lascano, R.J.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative Analysis of Hyperspectral Data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Estévez, J.; Salinero-Delgado, M.; Berger, K.; Pipia, L.; Rivera-Caicedo, J.P.; Wocher, M.; Reyes-Muñoz, P.; Tagliabue, G.; Boschetti, M.; Verrelst, J. Gaussian Processes Retrieval of Crop Traits in Google Earth Engine Based on Sentinel-2 Top-of-Atmosphere Data. Remote Sens. Environ. 2022, 273, 112958. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Maraphum, K.; Saengprachatanarug, K.; Wongpichet, S.; Phuphuphud, A.; Posom, J. Achieving Robustness across Different Ages and Cultivars for an NIRS-PLSR Model of Fresh Cassava Root Starch and Dry Matter Content. Comput. Electron. Agric. 2022, 196, 106872. [Google Scholar] [CrossRef]
- Wold, H. Estimation of Principal Components and Related Models by Iterative Least Squares In Multivariate Analysis. Multivar. Anal. 1966, 23, 391–420. [Google Scholar]
- Scott, D.W. Histogram. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 44–48. [Google Scholar] [CrossRef]
- Williamson, D.F.; Parker, R.A.; Kendrick, J.S. The Box Plot: A Simple Visual Method to Interpret Data. Ann. Intern. Med. 1989, 110, 916–921. [Google Scholar] [CrossRef]
- NING, H.-X. Deducing Maturity Genotype of the Chinese Soybean Varieties. Acta Agron. Sin. 2008, 34, 382–388. [Google Scholar] [CrossRef]
- Yue, J.; Guo, W.; Yang, G.; Zhou, C.; Feng, H.; Qiao, H. Method for Accurate Multi-Growth-Stage Estimation of Fractional Vegetation Cover Using Unmanned Aerial Vehicle Remote Sensing. Plant Methods 2021, 17, 51. [Google Scholar] [CrossRef]
- Sajid, M.; Mohsin, M.; Jamal, T.; Mobeen, M.; Rehman, A.; Rafique, A. Impact of Land-Use Change on Agricultural Production & Accuracy Assessment through Confusion Matrix. Int. J. Innov. Sci. Technol. 2022, 4, 233–245. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices. F. Crop. Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, H.; Yue, J.; Jin, X.; Liu, Y.; Chen, R.; Bian, M.; Ma, Y.; Song, X.; Yang, G. Using an Optimized Texture Index to Monitor the Nitrogen Content of Potato Plants over Multiple Growth Stages. Comput. Electron. Agric. 2023, 212, 108147. [Google Scholar] [CrossRef]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards Modeling Leaf Optical Properties through a Complete Lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef]
- Zhou, K.; Cao, L.; Yin, S.; Wang, G.; Cao, F. An Advanced Bidirectional Reflectance Factor (BRF) Spectral Approach for Estimating Flavonoid Content in Leaves of Ginkgo Plantations. ISPRS J. Photogramm. Remote Sens. 2022, 193, 1–16. [Google Scholar] [CrossRef]
- Yue, J.; Tian, J.; Tian, Q.; Xu, K.; Xu, N. Development of Soil Moisture Indices from Differences in Water Absorption between Shortwave-Infrared Bands. ISPRS J. Photogramm. Remote Sens. 2019, 154, 216–230. [Google Scholar] [CrossRef]
- Mishra, T.; Rabha, A.; Kumar, U.; Arunachalam, K.; Sridhar, V. Assessment of Solar Power Potential in a Hill State of India Using Remote Sensing and Geographic Information System. Remote Sens. Appl. Soc. Environ. 2020, 19, 100370. [Google Scholar] [CrossRef]
Stage/Abbreviation | Number | LCC | Flav | NBI | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | ||
Beginning bloom period (P1) | 51 | 25.41 | 34.32 | 30.24 | 0.961 | 1.399 | 1.197 | 20.65 | 32.98 | 25.41 |
Beginning pod period (P2) | 51 | 28.07 | 38.43 | 32.86 | 0.933 | 1.580 | 1.280 | 22.08 | 31.97 | 25.80 |
Beginning seed period (P3) | 51 | 31.18 | 46.18 | 39.79 | 1.058 | 1.762 | 1.471 | 20.76 | 34.67 | 27.24 |
Beginning maturity period (P4) | 42 | 7.78 | 33.34 | 20.07 | 1.212 | 1.882 | 1.541 | 4.66 | 22.80 | 13.23 |
Full maturity period (P5) | 11 | 10.59 | 27.89 | 19.77 | 1.061 | 1.697 | 1.322 | 6.24 | 19.88 | 15.22 |
Total | 206 | 7.78 | 46.18 | 30.62 | 0.933 | 1.882 | 1.362 | 4.66 | 34.67 | 22.93 |
Type | Name | Calculation | Reference |
---|---|---|---|
Vegetation SIs | NDVI | (NIR − R)/(NIR + R) | [37] |
NDVI2 | NDVI × NDVI | - | |
RDVI | (NIR − R)/(NIR + R)0.5 | [38] | |
SAVI | 1.5 (NIR − R)/(NIR + R + 0.5) | [39] | |
OSAVI | 1.16 (NIR − R)/(NIR + R + 0.16) | [40] | |
GNDVI | (NIR − G)/(NIR + G) | [41] | |
TCARI/OSAVI | 3((NIR − R) − 0.2(NIR − G)(NIR/R))/OSAVI | [42] | |
Red-edge SIs | CIRE | RE3/RE1 − 1 | [43] |
NDRE1 | (RE2 − RE1)/(RE2 + RE1) | [44] | |
NDRE2 | (RE3 − RE1)/(RE3 + RE1) | [45] | |
TCARI/OSAVIRE | 3((RE1 − R) − 0.2(RE1 − G)(RE1/R))/OSAVI | [46] | |
Hyperspectral derivative | FD + band number | First derivative (FD) of canopy hyperspectral reflectance | [47] |
Confusion Matrix | Predicted Condition | ||
---|---|---|---|
Immature | Matured/Harvested (MH) | ||
Actual condition | Immature | True immature (TI) | False immature (FI) |
Matured/harvested | False MH (FMH) | True MH (TMH) |
Type | NBI+NDVI | Predicted Condition | LCC+NDVI | Predicted Condition | ||||
---|---|---|---|---|---|---|---|---|
Immature | MH | Total | Immature | MH | Total | |||
Actual condition | Immature | 746 | 53 | 799 | Immature | 742 | 57 | 799 |
MH | 69 | 968 | 1037 | MH | 100 | 937 | 1037 | |
Total | 815 | 1021 | 1836 | Total | 842 | 994 | 1836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Gao, R.; Li, C.; Wang, J.; Liu, Y.; Hu, J.; Li, B.; Qiao, H.; Feng, H.; Yue, J. Mapping Soybean Maturity and Biochemical Traits Using UAV-Based Hyperspectral Images. Remote Sens. 2023, 15, 4807. https://doi.org/10.3390/rs15194807
Wang L, Gao R, Li C, Wang J, Liu Y, Hu J, Li B, Qiao H, Feng H, Yue J. Mapping Soybean Maturity and Biochemical Traits Using UAV-Based Hyperspectral Images. Remote Sensing. 2023; 15(19):4807. https://doi.org/10.3390/rs15194807
Chicago/Turabian StyleWang, Lizhi, Rui Gao, Changchun Li, Jian Wang, Yang Liu, Jingyu Hu, Bing Li, Hongbo Qiao, Haikuan Feng, and Jibo Yue. 2023. "Mapping Soybean Maturity and Biochemical Traits Using UAV-Based Hyperspectral Images" Remote Sensing 15, no. 19: 4807. https://doi.org/10.3390/rs15194807
APA StyleWang, L., Gao, R., Li, C., Wang, J., Liu, Y., Hu, J., Li, B., Qiao, H., Feng, H., & Yue, J. (2023). Mapping Soybean Maturity and Biochemical Traits Using UAV-Based Hyperspectral Images. Remote Sensing, 15(19), 4807. https://doi.org/10.3390/rs15194807