Correction: Xiong et al. Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sens. 2022, 14, 4896
References Correction
Text Correction
References List
- 16.
- Burke, M.; Driscoll, A.; Lobell, D.B.; Ermon, S. Using Satellite Imagery to Understand and Promote Sustainable Development. Science 2021, 371, eabe8628.
- 17.
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. https://doi.org/10.1016/j.rse.2019.02.016.
- 18.
- Fu, W.; Ma, J.; Chen, P.; Chen, F. Remote Sensing Satellites for Digital Earth. In Manual of Digital Earth; Springer: Singapore, 2020; pp. 55–123.
- 19.
- Xu, Y.; Yu, L.; Zhao, F.R.; Cai, X.; Zhao, J.; Lu, H.; Gong, P. Tracking Annual Cropland Changes from 1984 to 2016 Using Time-Series Landsat Images with a Change-Detection and Post-Classification Approach: Experiments from Three Sites in Africa. Remote Sens. Environ. 2018, 218, 13–31.
- 20.
- Jain, M.; Mondal, P.; DeFries, R.S.; Small, C.; Galford, G.L. Mapping Cropping Intensity of Smallholder Farms: A Comparison of Methods Using Multiple Sensors. Remote Sens. Environ. 2013, 134, 210–223. https://doi.org/10.1016/j.rse.2013.02.029.
- 21.
- Lobell, D.B. The Use of Satellite Data for Crop Yield Gap Analysis. Field Crops Res. 2013, 143, 56–64.
- 22.
- Fritz, S.; See, L.; McCallum, I.; Schill, C.; Obersteiner, M.; Van der Velde, M.; Boettcher, H.; Havlík, P.; Achard, F. Highlighting Continued Uncertainty in Global Land Cover Maps for the User Community. Environ. Res. Lett. 2011, 6, 044005.
- 48.
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 Reflective Wavelength and Normalized Difference Vegetation Index Continuity. Remote Sens. Environ. 2016, 185, 57–70.
- 49.
- Sarvia, F.; De Petris, S.; Borgogno-Mondino, E. Mapping Ecological Focus Areas within the EU CAP Controls Framework by Copernicus Sentinel-2 Data. Agronomy 2022, 12, 406. https://doi.org/10.3390/agronomy12020406.
- 50.
- Jayne, T.S.; Chamberlin, J.; Traub, L.; Sitko, N.; Muyanga, M.; Yeboah, F.K.; Anseeuw, W.; Chapoto, A.; Wineman, A.; Nkonde, C.; et al. Africa’s Changing Farm Size Distribution Patterns: The Rise of Medium-scale Farms. Agric. Econ. 2016, 47, 197–214. https://doi.org/10.1111/agec.12308.
- 51.
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Oliphant, A.; Congalton, R.; Yadav, K.; Gorelick, N. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sens. 2017, 9, 1065. https://doi.org/10.3390/rs9101065.
- 52.
- Chikowo, R. Zambia—Global Yield Gap Atlas. Available online: https://www.yieldgap.org/zambia (accessed on 26 March 2022).
- 53.
- Esterhuizen, Dirk Zambia: Agricultural Economic Fact Sheet. Available online: https://www.fas.usda.gov/data/zambia-agricultural-economic-fact-sheet (accessed on 27 March 2022).
- 54.
- FAO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets by Food and Agriculture Organization of the United Nations. Available online: https://www.scribd.com/book/470301196/The-State-of-Food-Security-and-Nutrition-in-the-World-2020-Transforming-Food-Systems-for-Affordable-Healthy-Diets?utm_medium=cpc&utm_source=google_search&utm_campaign=3Q_Google_DSA_NB_RoW&utm_device=c&gclid=Cj0KCQjw8_qRBhCXARIsAE2AtRZPzJnrjGz9rAtlS_9BsDxIuyjM4euBqSU1q_ZWk9Rww7pPAtJQg2AaAnOYEALw_wcB (accessed on 26 March 2022).
- 55.
- Zulu, Peter Country Presentation on Agricultural Policy—Zambia Second National Agricultural Policy (Snap) N.D. Available online: https://www.wto.org/english/tratop_e/agric_e/presentation_zambia.pdf (accessed on 14 September 2022).
- 56.
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Congalton, R.G.; Yadav, K.; Dungan, J.; Oliphant, A.J.; Poehnelt, J. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) Cropland Extent 2015 Africa 30 m V001 [Data Set]; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2017.
- 57.
- Engebretson, C. Landsat 8 (L8) Level 1 (L1) Data Format Control Book (DFCB); USGA: Liberty Corner, NJ, USA, 2017.
- 59.
- Engebretson, C. Landsat Thematic Mapper (TM) Level 1 (L1) Data Format Control Book (DFCB); USGA: Liberty Corner, NJ, USA, 2018.
- 60.
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902.
- 61.
- Kovalskyy, V.; Roy, D.P. The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30 m Landsat Data Product Generation. Remote Sens. Environ. 2013, 130, 280–293.
- 62.
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. https://doi.org/10.3390/rs10050691.
- 63.
- Flood, N. Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median). Remote Sens. 2013, 5, 6481–6500. https://doi.org/10.3390/rs5126481.
- 64.
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910.
- 65.
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316.
- 66.
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New Global Forest/Non-Forest Maps from ALOS PALSAR Data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31.
- 67.
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and Its Application Advances. Int. J. Remote Sens. 2011, 32, 3875–3896.
- 68.
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. https://doi.org/10.3390/ECRS-3-06201.
- 69.
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426.
- 70.
- Kankaku, Y.; Suzuki, S.; Osawa, Y. ALOS-2 Mission and Development Status. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2396–2399.
- 71.
- Kankaku, Y.; Sagisaka, M.; Suzuki, S. PALSAR-2 Launch and Early Orbit Status. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: New York, NY, USA, 2014; pp. 3410–3412.
- 72.
- Panetti, A.; Rostan, F.; L’Abbate, M.; Bruno, C.; Bauleo, A.; Catalano, T.; Cotogni, M.; Galvagni, L.; Pietropaolo, A.; Taini, G. Copernicus Sentinel-1 Satellite and C-SAR Instrument. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: New York, NY, USA, 2014; pp. 1461–1464.
- 75.
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004.
- 76.
- Csillik, O.; Belgiu, M. Cropland Mapping from Sentinel-2 Time Series Data Using Object-Based Image Analysis. Environ. Sci. 2017, 5, 3668893.
- 77.
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001.
- 78.
- Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. Available online: https://scholar.google.com/scholar?cluster=214423033174585364&hl=en&as_sdt=0,5 (accessed on 17 August 2022).
- 79.
- Ye, S.; Rogan, J.; Sangermano, F. Monitoring Rubber Plantation Expansion Using Landsat Data Time Series and a Shapelet-Based Approach. ISPRS J. Photogramm. Remote Sens. 2018, 136, 134–143. https://doi.org/10.1016/j.isprsjprs.2018.01.002.
- 80.
- Ye, L.; Keogh, E. Time Series Shapelets: A New Primitive for Data Mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 947–956.
- 81.
- Zakaria, J.; Mueen, A.; Keogh, E. Clustering Time Series Using Unsupervised-Shapelets. In Proceedings of the 2012 IEEE 12th International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; IEEE: New York, NY, USA, 2012; pp. 785–794.
- 82.
- Papagiannopoulou, C.; Miralles, D.; Depoorter, M.; Verhoest, N.E.; Dorigo, W.; Waegeman, W. Discovering Relationships in Climate-Vegetation Dynamics Using Satellite Data. In Proceedings of the AALTD 2016: Second ECML/PKDD International Workshop on Advanced Analytics and Learning on Temporal Data, Riva del Garda, Italy, 19–23 September 2016; p. 46.
- 83.
- Grabocka, J.; Schilling, N.; Wistuba, M.; Schmidt-Thieme, L. Learning Time-Series Shapelets. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 392–401.
- 84.
- Hills, J.; Lines, J.; Baranauskas, E.; Mapp, J.; Bagnall, A. Classification of Time Series by Shapelet Transformation. Data Min. Knowl. Discov. 2014, 28, 851–881.
- 85.
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015.
- 86.
- Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M.; et al. Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation. Remote Sens. 2016, 8, 807. https://doi.org/10.3390/rs8100807.
- 87.
- Lisle, R.J. Google Earth: A New Geological Resource. Geol. Today 2006, 22, 29–32.
- 88.
- Zambia FAO STAT—Land Use and Agricultural Inputs—Zambia Data Portal. Available online: https://zambia.opendataforafrica.org/yuyskrf/zambia-fao-stat-land-use-and-agricultural-inputs (accessed on 22 August 2022).
- 89.
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2022, 3, 19–28. https://doi.org/10.1038/s43016-021-00429-z.
- 90.
- Azzali, S. General Features of Agriculture in Zambia; ICW: Glasgow, Scotland, 1987.
- 91.
- De Bernardis, C.; Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Contribution to Real-Time Estimation of Crop Phenological States in a Dynamical Framework Based on NDVI Time Series: Data Fusion with SAR and Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3512–3523.
- 92.
- Debats, S.R.; Luo, D.; Estes, L.D.; Fuchs, T.J.; Caylor, K.K. A Generalized Computer Vision Approach to Mapping Crop Fields in Heterogeneous Agricultural Landscapes. Remote Sens. Environ. 2016, 179, 210–221. https://doi.org/10.1016/j.rse.2016.03.010.
- 93.
- Motohka, T.; Nasahara, K.N.; Miyata, A.; Mano, M.; Tsuchida, S. Evaluation of Optical Satellite Remote Sensing for Rice Paddy Phenology in Monsoon Asia Using a Continuous in Situ Dataset. Int. J. Remote Sens. 2009, 30, 4343–4357. https://doi.org/10.1080/01431160802549369.
- 94.
- Lesiv, M.; Laso Bayas, J.C.; See, L.; Duerauer, M.; Dahlia, D.; Durando, N.; Hazarika, R.; Kumar Sahariah, P.; Vakolyuk, M.; Blyshchyk, V.; et al. Estimating the Global Distribution of Field Size Using Crowdsourcing. Glob. Change Biol. 2019, 25, 174–186. https://doi.org/10.1111/gcb.14492.
- 95.
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder Maize Area and Yield Mapping at National Scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. https://doi.org/10.1016/j.rse.2019.04.016.
- 96.
- Wang, S.; Chen, W.; Xie, S.M.; Azzari, G.; Lobell, D.B. Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery. Remote Sens. 2020, 12, 207. https://doi.org/10.3390/rs12020207.
- 97.
- Kerner, H.; Tseng, G.; Becker-Reshef, I.; Nakalembe, C.; Barker, B.; Munshell, B.; Paliyam, M.; Hosseini, M. Rapid Response Crop Maps in Data Sparse Regions. arXiv 2020, arXiv:2006.16866.
- 98.
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sens. Environ. 2001, 75, 230–244. https://doi.org/10.1016/S0034-4257(00)00169-3.
- 99.
- Hansen, M.C.; Loveland, T.R. A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sens. Environ. 2012, 122, 66–74. https://doi.org/10.1016/j.rse.2011.08.024.
- 100.
- Schmidt, G.L.; Jenkerson, C.; Masek, J.G.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; U.S. Geological Survey: Sioux Falls, SD, USA, 2013.
- 101.
- Elmes, A.; Alemohammad, H.; Avery, R.; Caylor, K.; Eastman, J.R.; Fishgold, L.; Friedl, M.A.; Jain, M.; Kohli, D.; Laso Bayas, J.C. Accounting for Training Data Error in Machine Learning Applied to Earth Observations. Remote Sens. 2020, 12, 1034.
- 102.
- Azzari, G.; Jain, S.; Jeffries, G.; Kilic, T.; Murray, S. Understanding the Requirements for Surveys to Support Satellite-Based Crop Type Mapping. 2021. Available online: https://openknowledge.worldbank.org/handle/10986/35404 (accessed on 17 August 2022).
- 103.
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A Near-Real-Time Approach for Monitoring Forest Disturbance Using Landsat Time Series: Stochastic Continuous Change Detection. Remote Sens. Environ. 2021, 252, 112167. https://doi.org/10.1016/j.rse.2020.112167.
- 104.
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. https://doi.org/10.1016/j.rse.2014.01.011.
Reference
- Xiong, S.; Baltezar, P.; Crowley, M.A.; Cecil, M.; Crema, S.C.; Baldwin, E.; Cardille, J.A.; Estes, L. Correction: Xiong et al. Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sens. 2022, 14, 4896. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Baltezar, P.; Crowley, M.A.; Cecil, M.; Crema, S.C.; Baldwin, E.; Cardille, J.A.; Estes, L. Correction: Xiong et al. Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sens. 2022, 14, 4896. Remote Sens. 2023, 15, 4692. https://doi.org/10.3390/rs15194692
Xiong S, Baltezar P, Crowley MA, Cecil M, Crema SC, Baldwin E, Cardille JA, Estes L. Correction: Xiong et al. Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sens. 2022, 14, 4896. Remote Sensing. 2023; 15(19):4692. https://doi.org/10.3390/rs15194692
Chicago/Turabian StyleXiong, Sitian, Priscilla Baltezar, Morgan A. Crowley, Michael Cecil, Stefano C. Crema, Eli Baldwin, Jeffrey A. Cardille, and Lyndon Estes. 2023. "Correction: Xiong et al. Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sens. 2022, 14, 4896" Remote Sensing 15, no. 19: 4692. https://doi.org/10.3390/rs15194692
APA StyleXiong, S., Baltezar, P., Crowley, M. A., Cecil, M., Crema, S. C., Baldwin, E., Cardille, J. A., & Estes, L. (2023). Correction: Xiong et al. Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sens. 2022, 14, 4896. Remote Sensing, 15(19), 4692. https://doi.org/10.3390/rs15194692