Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Characteristics of the ZJB Landslide Hazard Chain Breeding and Evolution
4.1.1. Deformation History of the Landslide
4.1.2. Characteristics of the Landslide Damming Hazard Chain
4.2. Formation Mechanism of the Hazard Chain
4.2.1. Intrinsic Weak Geological Condition Analysis
4.2.2. External Triggering Factor Analysis
4.3. Hazard Analysis of the Landslide-Barrier Lake-Outburst Flood Chain
4.3.1. Stability Analysis of the Landslide Dam
4.3.2. Inversion Simulation of the Dynamic Process of the ZJB Landslide
4.3.3. Scenario Analysis of Potential Barrier Lake Outburst
5. Discussion
5.1. The Evolution Pattern of the Landslide Hazard Chain
5.2. Flood Risk Prediction of Dam Rupture
5.3. Application of Multiple Techniques in the Study of Small-Scale Landslide Hazard Chain
6. Conclusions
- (1)
- The formation of the ZJB landslide hazard chain was affected by the geological structure, natural weathering, slope shape, valley terrain, continuous rainfall, and hydrology. The joint action of structure, weathering, and rainfall caused the breakage of the rock material and controlled the formation of the landslide mass. Rainfall far beyond the levels during the same period in previous years reduced the shear strength of the broken rock mass and induced landslides after infiltration. The high and steep slope shape and fault trough provided significant potential energy and a convenient movement channel for the sliding material. The narrow valley terrain controlled the concentrated accumulation of material. The upstream inflow controlled the speed of the dammed lake water storage. We divided the landslide hazard chain event into four stages: gestation, induction, violent movement, and formation of the landslide dam and barrier lake.
- (2)
- We used numerical models to accurately invert the stages in a landslide hazard chain that had already occurred; on this basis, we then simulated potential extension links and predicted the hazards that may form. These simulations showed that the potential collapse risk of the barrier lake from landslide dam overtopping is closely related to the upstream inflow. When the inflow reaches 36 m3/s, the barrier lake breaks down on a large scale and 68% of Hekou Village will be affected by an outburst flood. Under the same inflow scenario, the excavation of an artificial spillway can effectively reduce the risk of dam rupture. However, the existing artificial spillway cannot completely eliminate the risk of dam failure.
- (3)
- In this study, a comprehensive multi-technology research system for small-scale landslide disaster chains has been constructed; this is based on remote sensing data, such as satellite imagery, UAV data, and radar data, combined with field investigations, ERT, and InSAR technology. Through this system, a comprehensive investigation of the ZJB landslide disaster chain has been realized, the formation mechanism of the landslide barrier has been analyzed, and the risk of a potential outburst flood has been predicted. This study not only realizes the evaluation of the ZJB landslide dam, but also provides an important reference for the emergency treatment of similar geohazard chains and provides support for hazard prevention and mitigation in tectonically active mountainous areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, X. Landslides & Debris Flows in Southern Gansu, China and Formation of the Catastrophic Zhouqu Debris Flow Disaster in August 2010. Quat. Int. 2012, 279-280, 322–323. [Google Scholar]
- Fan, X.; Yang, F.; Subramanian, S.S.; Xu, Q.; Feng, Z.; Mavrouli, O.; Peng, M.; Ouyang, C.; Jansen, J.D.; Huang, R. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China. Landslides 2020, 17, 147–164. [Google Scholar] [CrossRef]
- Evans, S.G.; Hermanns, R.L.; Strom, A.; Scarascia-Mugnozza, G. Natural and Artificial Rockslide Dams; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Peng, J.; Fan, Z.; Wu, D.; Zhuang, J.; Dai, F.; Chen, W.; Zhao, C. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flflow in Tianshui, China. Eng. Geol. 2015, 186, 79–90. [Google Scholar] [CrossRef]
- Stefanelli, C.T.; Catani, F.; Casagli, N. Geomorphological investigations on landslide dams. Geoenviron. Disasters 2015, 2, 21. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Sharafi, S.; Ehteshami-Moinabadi, M.; Darvishi, S. Mechanism of landslide damming in Morzarrin Valley and its consequences, Lorestan Province, western Iran. Landslides 2021, 18, 1823–1832. [Google Scholar] [CrossRef]
- Chong, Y.; Chen, G.; Meng, X.; Yang, Y.; Shi, W.; Bian, S.; Zhang, Y.; Yue, D. Quantitative analysis of artificial dam failure effects on debris flows-A case study of the Zhouqu ’8.8’ debris flow in northwestern China. Sci. Total Environ. 2021, 792, 148439. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- Karagianni, A.; Lazos, I.; Chatzipetros, A. Remote Sensing Techniques in Disaster Management: Amynteon Mine Landslides, Greece. In Intelligent Systems for Crisis Management; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef]
- Delaney, K.B.; Evans, S.G. The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: Review, remote sensing analysis, and process modelling. Geomorphology 2015, 246, 377–393. [Google Scholar] [CrossRef]
- Guo, C.; Montgomery, D.R.; Zhang, Y.; Zhong, N.; Fan, C.; Wu, R.; Yang, Z.; Ding, Y.; Jin, J.; Yan, Y. Evidence for repeated failure of the giant Yigong landslide on the edge of the Tibetan Plateau. Sci. Rep. 2020, 10, 14371. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xu, Q.; Scaringi, G.; Dai, L.; Li, W.; Dong, X.; Zhu, X.; Pei, X.; Dai, K.; Havenith, H. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 2017, 14, 2129–2146. [Google Scholar] [CrossRef]
- Hu, K.; Wu, C.; Tang, J.; Pasuto, A.; Li, Y.; Yan, S. New understandings of the June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 2018, 15, 2465–2474. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, T.; He, J.; Chen, C. Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides 2019, 16, 1965–1979. [Google Scholar] [CrossRef]
- Zhang, Z. Mechanism of the 2019 Yahuokou landslide reactivation in Gansu, China and its causes. Landslides 2020, 17, 1429–1440. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Novellino, A.; Dijkstra, T.; Chen, G.; Jordan, C.; Li, Y.; Su, X. Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 2022, 19, 35–50. [Google Scholar]
- Norio, O.; Ye, T.; Kajitani, Y.; Shi, P.; Tatano, H. The 2011 eastern Japan great earthquake disaster: Overview and comments. Int. J. Disaster Risk Sci. 2011, 2, 34–42. [Google Scholar] [CrossRef]
- Liu, W.; He, S. Dynamic simulation of a mountain disaster chain: Landslides, barrier lakes, and outburst floods. Nat. Hazards 2017, 90, 757–775. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.; Lu, G.; Zhou, Y.; Zhang, J.; Fan, G. Initia tion mechanism and quantitative mass movement analysis of the 2019 Shuicheng catastrophic landslide. Q. J. Eng. Geol. Hydrogeol. 2020, 54, qjegh2020–qjegh2052. [Google Scholar]
- Shen, D.; Shi, Z.; Peng, M.; Zhang, L.; Zhu, Y. Preliminary analysis of a rainfall-induced landslide hazard chain in Enshi City, Hubei Province, China in July 2020. Landslides 2021, 18, 509–512. [Google Scholar] [CrossRef]
- Nian, T.; Wu, H.; Chen, G.; Zheng, D.; Zhang, Y.; Li, D. Research process on stability evaluation method and disaster chain effect of landslide dam. Chin. J. Rock Mech. Eng. 2018, 37, 1796–1812. [Google Scholar]
- Wang, G.; Furuya, G.; Zhang, F.; Doi, I.; Watanabe, N.; Wakai, A.; Marui, H. Lyered internal structure and breaching risk assessment of the Higashi-Takezawa landslide dam in Niigata, Japan. Geomorphology 2016, 267, 48–58. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Zhou, J.; Chen, W.; Long, J.; Wang, X.; Peng, T. Recent rainfall-and excavation-induced bedding rockslide occurring on 22 October 2018 along the Jian-En expressway, Hubei, China. Landslides 2020, 17, 2619–2629. [Google Scholar] [CrossRef]
- Dufresne, A.; Geertsema, M. Rock slide-debris avalanches: Flow transformation and hummo-ck formation, examples from British Columbia. Landslides 2019, 17, 15–22. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.; Ju, Y.; Dong, X.; Peng, D. Multitemporal UAV-based photogrammetry for landslide detection and monitoring in a large area: A case study in the Heifangtai terrace in the Loess Plateau of China. J. Mt. Sci. 2020, 17, 1826–1839. [Google Scholar] [CrossRef]
- Cheng, Z.; Gong, W.; Tang, H.; Juang, C.; Deng, Q.; Chen, J.; Ye, X. UAV photogrammetry based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Eng. Geol. 2021, 289, 106172. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Huang, C.; Li, M. Spatio-temporal evolution characteristics of typical dibris flow sources after an earthquake. Landslides 2022, 19, 2263–2275. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Hu, K.; Cui, L.; Wang, L.; Xia, Z.; Huang, Q. Modelling the evolution of propagation and runout from a gravel-silty clay landslide to a debris flow in Shaziba, southwestern Hubei Province, China. Landslides 2022, 19, 2199–2212. [Google Scholar] [CrossRef]
- Tommasi, P.; Campedel, P.; Consorti, C.; Ribacchi, R. A discontinuous approach to the numerical modelling of rock avalanches. Rock Mech. Rock Eng. 2008, 41, 37–58. [Google Scholar] [CrossRef]
- Sosio, R.; Crosta, G.B.; Hungr, O. Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 2012, 9, 315–334. [Google Scholar] [CrossRef]
- Huang, T.; Ding, M.; She, T.; Tian, S.; Yang, J. Numerical simulation of high-speed landslide in Chenjiaba, Beichuan, China. J. Mt. Sci. 2017, 14, 2137–2149. [Google Scholar] [CrossRef]
- Zhao, W.; Xia, X.; Su, X.; Liang, Q.; Liu, X.; Ju, N. Movement process analysis of the high-speed long-runout Shuicheng landslide over 3-D complex terrain using a depth-averaged numerical model. Landslides 2021, 18, 3213–3226. [Google Scholar] [CrossRef]
- Iverson, R.M.; Ouyang, C. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Rev. Geophys. 2014, 53, 27–58. [Google Scholar] [CrossRef]
- McDougall, S. 2014 Canadian Geotechnical Colloquium: Landslide runout analysis—Current practice and challenges. Can. Geotech. J. 2017, 54, 605–620. [Google Scholar] [CrossRef]
- An, H.; Ouyang, C.; Zhou, S. Dynamic process analysis of the Baige landslide by the combination of DEM and long-period seismic waves. Landslides 2021, 18, 1625–1639. [Google Scholar] [CrossRef]
- Liu, C.; Pollard, D.D.; Shi, B. Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. J. Geophys. Res. Solid Earth 2013, 118, 71–82. [Google Scholar] [CrossRef]
- Lin, C.; Lin, M. Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng. Geol. 2015, 197, 172–187. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhao, W.; He, S.; Wang, D.; Zhou, S.; An, H.; Wang, Z.; Cheng, D. Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China. J. Mt. Sci. 2017, 14, 1701–1711. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, Z.; Zhou, J. Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River. Landslides 2020, 17, 2317–2328. [Google Scholar] [CrossRef]
- Qiao, L. Development of Landslides Dominated by Neotectonics in Bailong River Corridor, Gansu Province, China. Ph.D. Dissertation, Lanzhou University, Lanzhou, China, 2017. [Google Scholar]
- Palis, E.; Lebourg, T.L.; Vidal, M.; Levy, C.; Tric, E.; Hernandez, M. Multiyear time-lapse ERT to study short and long-term landslide hydrological dynamics. Landslides 2017, 14, 1333–1343. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical monitoring of moisture-induced landslides: A review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef]
- Mergili, M.; Pudasaini, S.P. r.avaflow—The Mass Flow Simulation Tool. 2014–2023. Available online: https://www.avaflow.org (accessed on 7 June 2022).
- Pudasaini, S.P.; Mergili, M. A Multi-Phase Mass Flow Model. JGR Earth Surf. 2019, 124, 2920–2942. [Google Scholar] [CrossRef]
- Mergili, M.; Fischer, J.T.; Krenn, J.; Pudasaini, S.P.R. avaflow v1, an advanced open source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 2017, 10, 553–569. [Google Scholar] [CrossRef]
- Pudasaini, S.P. A general two-phase debris flow model. J. Geophys. Res. Earth Surf. 2012, 117, 1–28. [Google Scholar] [CrossRef]
- Mergili, M.; Jaboyedoff, M.; Pullarello, J.; Pudasaini, S.P. Back-calculation of the 2017 Piz Cengalo-Bondo landslide cascade with r.avaflow. Nat. Hazards Earth Syst. Sci. 2020, 20, 505–520. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock, ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef]
- Zheng, G.; Mergili, M.; Emmer, A.; Allen, S.; Bao, A.; Guo, H.; Stoffel, M. The 2020 glacial lake outburst flood at Jinwuco, Tibet: Causes, impacts, and implications for hazard and risk assessment. Cryosphere 2021, 15, 3159–3180. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Wang, Z.; Yang, W.; Ouyang, C.; Zhu, X.; Scaringi, G. Threat from above! Assessing the risk from the Tonghua high-locality landslide in Sichuan, China. Landslides 2022, 19, 731–746. [Google Scholar] [CrossRef]
- ASTM C29/C29M-09; Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International: West Conshohocken, PA, USA, 2010.
- Chen, X.; Zhou, Q.; Liu, C. Distribution pattern of coseismic landslides triggered by the 2014 ludian, Yunnan, China Mw6.1 earthquake: Special controlling conditions of local topography. Landslides 2015, 12, 1159–1168. [Google Scholar]
- Shen, W.; Li, T.; Li, P.; Guo, J. A modified finite difference model for the modeling of flowslides. Landslides 2018, 15, 1577–1593. [Google Scholar] [CrossRef]
- Chen, H.; Qin, S.; Xue, L.; Xu, C. Why the Xintan landslide was not triggered by the heaviest historical rainfall: Mechanism and review. Eng. Geol. 2021, 294, 106379. [Google Scholar] [CrossRef]
- Lu, N.; Godt, J.W.; Wu, D. A closed-form equation for effective stress in unsaturated soil. Water Resour. Res. 2010, 46, 567–573. [Google Scholar] [CrossRef]
- Zhao, W.; Li, L.; Xiao, Y. Experimental research of matrix suction of the unsaturated red clay. Adv. Mater. Res. 2014, 919–921, 835–838. [Google Scholar] [CrossRef]
- Gao, Y.; Li, B.; Gao, H.; Chen, L.; Wang, Y. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: A case study of the Shuicheng “7.23” landslide in Guizhou, China. Landslides 2020, 17, 1663–1677. [Google Scholar] [CrossRef]
- Ermini, L.; Casagli, N. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surf. Process. Landforms 2003, 28, 31–47. [Google Scholar] [CrossRef]
- Susilo, A.; Suryo, E.A.; Fitriah, F.; Sutasoma, M. Preliminary study of landslide in Sri Mulyo, Malang, Indonesia using resistivity method and drilling core data. Int. J. Geomate 2018, 15, 161–168. [Google Scholar] [CrossRef]
- Bian, S.; Chen, G.; Zeng, R.; Meng, X.; Jin, J.; Lin, L.; Zhang, Y.; Shi, W. Post-failure evolution analysis of an irrigation-induced loess landslide using multiple remote sensing approaches integrated with time-lapse ERT imaging: Lessons from Heifangtai, China. Landslides 2022, 19, 1179–1197. [Google Scholar] [CrossRef]
- Tsai, W.N.; Chen, C.C.; Chiang, C.W.; Chen, P.Y.; Kuo, C.Y.; Wang, K.L.; Lin, M.L.; Chen, R.F. Electrical Resistivity Tomography (ERT) Monitoring for Landslides: Case Study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan. Front. Earth Sci. 2021, 9, 737271. [Google Scholar] [CrossRef]
- El-Raouf, A.A.; Iqbal, I.; Meister, J.; Abdelrahman, K.; Alzahrani, H.; Badran, O.M. Earthflow reactivation assessment by multichannel analysis of surface waves and electrical resistivity tomography: A case study. Open Geosci. 2021, 13, 1328–1344. [Google Scholar] [CrossRef]
- Swanson, F.J.; Oyagi, N.; Tominaga, M. Landslide dams in Japan. In Landslide Dams: Process, Risk, and Mitigation; Special Publication No. 3; Schuster, R.L., Ed.; American Society of Civil Engineers: New York, NY, USA, 1986; pp. 273–278. [Google Scholar]
- Chen, S.; Hsu, C.; Wu, T.; Chou, H.; Cui, P. Landslide dams induced by typhoon morakot and risk assessment. Ital. J. Eng. Geol. Environ. 2011, 653–660. [Google Scholar] [CrossRef]
Data | Resolution | Date | Source |
---|---|---|---|
Pre-sliding DEM | 12.5 m | / | Alos PalSAR |
Geologic map | 1:100,000 | / | Gansu Geological Engineering Survey Institute |
Sentinel-1A | VV | March 2017–December 2020 | European Space Agency |
Historical satellite images | 0.5 m | 9 December 2013/3 January 2016/ 21 November 2018/2 July 2020 | Pleiades A/B |
Rainfall data | 1 day | January 2020–December 2020 | Surface weather station |
ERT data | 5 m | September 2021 | Field actual exploration |
Post-sliding DSM | 0.35 m | August 2020 | Field aerial survey by UAV (DJI Phantom 4 RTK) |
Parameter | Symbol | Unit | Exp. Land Slide | Exp. Dam Break |
---|---|---|---|---|
Solid material density | pS | kg/m3 | 2850 | 2850 |
Fluid material density | pF | kg/m3 | 1000 | 1000 |
Internal friction angle | φ | degree | 35 | / |
Basal friction angle | δ | degree | 22.5 | / |
Parameter for combination of solid- and fluid-like contributions to drag resistance | P | / | 1 | 0.5 |
Ambient drag coefficient | CAD | / | 0 | 0.05 |
Entrainment coefficient | CE | kg−1 | 10−6.0 | 10−6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Chen, G.; Meng, X.; Bian, S.; Jin, J.; Wu, J.; Huang, F.; Chong, Y. Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 4691. https://doi.org/10.3390/rs15194691
Shi W, Chen G, Meng X, Bian S, Jin J, Wu J, Huang F, Chong Y. Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data. Remote Sensing. 2023; 15(19):4691. https://doi.org/10.3390/rs15194691
Chicago/Turabian StyleShi, Wei, Guan Chen, Xingmin Meng, Shiqiang Bian, Jiacheng Jin, Jie Wu, Fengchun Huang, and Yan Chong. 2023. "Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data" Remote Sensing 15, no. 19: 4691. https://doi.org/10.3390/rs15194691
APA StyleShi, W., Chen, G., Meng, X., Bian, S., Jin, J., Wu, J., Huang, F., & Chong, Y. (2023). Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data. Remote Sensing, 15(19), 4691. https://doi.org/10.3390/rs15194691