Supervised Geomorphic Mapping of Himalayan Rivers Based on Sentinel-2 Data
Abstract
:1. Introduction
2. Study Areas and Available Satellite Images
2.1. Study Areas
2.2. Datasets Used
3. Methodological Approach and Workflow
3.1. Pre-Processing Platform
3.2. Model Development for Multitemporal Image Classification
3.2.1. Definition of Morphological Macro-Unit Classes
3.2.2. Filtering Training Images and Developing Training Data
3.2.3. Image Classification
3.2.4. Accuracy Assessment
Error Matrix | 2019 | 2020 | 2021 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nubra River | MD 09/20 | Veg | Water | Sed | UA | MD 08/17 | Veg | Water | Sed | UA | MD 08/25 | Veg | Water | Sed | UA |
Veg | 450 | 8 | 0 | 0.98 | Veg | 458 | 0 | 0 | 1 | Veg | 458 | 0 | 0 | 1 | |
Water | 0 | 263 | 27 | 0.9 | Water | 0 | 290 | 0 | 1 | Water | 0 | 288 | 2 | 0.99 | |
Sed | 0 | 1 | 166 | 0.99 | Sed | 0 | 0 | 167 | 1 | Sed | 0 | 0 | 167 | 1 | |
PA | 1 | 0.96 | 0.86 | 0.96 | PA | 1 | 1 | 1 | 1 | PA | 1 | 1 | 0.98 | 0.99 | |
Saltoro River | MD 08/16 | Veg | Water | Sed | UA | MD 08/25 | Veg | Water | Sed | UA | MD 09/19 | Veg | Water | Sed | UA |
Veg | 134 | 0 | 0 | 1 | Veg | 134 | 0 | 0 | 1 | Veg | 134 | 0 | 0 | 1 | |
Water | 0 | 83 | 18 | 0.82 | Water | 0 | 100 | 1 | 0.99 | Water | 0 | 68 | 33 | 0.67 | |
Sed | 0 | 0 | 103 | 1 | Sed | 0 | 0 | 103 | 1 | Sed | 0 | 8 | 95 | 0.92 | |
PA | 1 | 1 | 0.85 | 0.95 | PA | 1 | 1 | 0.99 | 0.99 | PA | 1 | 0.89 | 0.74 | 0.87 | |
Langtang-Khola River | MD 09/29 | Veg | Water | Sed | UA | ||||||||||
Veg | 339 | 0 | 0 | 1 | |||||||||||
Water | 0 | 49 | 2 | 0.96 | |||||||||||
Sed | 0 | 0 | 41 | 1 | |||||||||||
PA | 1 | 1 | 0.95 | 0.99 | |||||||||||
Ganga-Bhagirathi River | MD 08/16 | Veg | Water | Sed | UA | MD 08/25 | Veg | Water | Sed | UA | MD 09/19 | Veg | Water | Sed | UA |
Veg | 117 | 1 | 2 | 97.5 | Veg | 117 | 3 | 0 | 97.5 | Veg | 118 | 1 | 1 | 98.3 | |
Water | 0 | 64 | 6 | 91.4 | Water | 0 | 70 | 0 | 1 | Water | 0 | 64 | 6 | 91.4 | |
Sed | 0 | 8 | 33 | 80.4 | Sed | 0 | 0 | 41 | 1 | Sed | 0 | 0 | 41 | 1 | |
PA | 1 | 87.6 | 80.4 | 92.6 | PA | 1 | 95.8 | 1 | 98.6 | PA | 1 | 98.4 | 85.4 | 96.5 |
4. Results
4.1. Image Classification
4.2. Accuracy Assessment
5. Discussion
5.1. Novelty and Impact of the Proposed Model
5.2. Limitations of the Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heckmann, T.; Mccoll, S.; Morche, D. Retreating ice: Research in pro-glacial areas matters. Earth Surf. Process. Landf. 2016, 41, 271–276. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Chen, X.; Gao, Y. Estimation of Suspended Sediment Concentration in the Yangtze Main Stream Based on Sentinel-2 MSI Data. Remote Sens. 2022, 14, 4446. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Edwards, P.P.; Petts, G.E.; Ward, J. A conceptual model for alpine proglacial river channel evolution under changing climatic conditions. Catena 2000, 38, 223–242. [Google Scholar] [CrossRef]
- Marren, P.M.; Toomath, S.C. Channel pattern of proglacial rivers: Topographic forcing due to glacier retreat. Earth Surf. Process. Landf. 2014, 39, 943–951. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Rushmer, E.L. Inter- and Intra-Catchment Variations in Proglacial Geomorphology: An Example from Franz Josef Glacier and Fox Glacier, New Zealand. Arct. Antarct. Alp. Res. 2018, 41, 18–36. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 2018, 8, 135–140. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Rinaldi, M.; Buijse, A.D.; Brierley, G.; Piégay, H. Hydromorphological frameworks: Emerging trajectories. Aquat. Sci. 2015, 78, 135–138. [Google Scholar] [CrossRef]
- Owens, P.N.; Blake, W.H.; Millward, G.E. Extreme levels of fallout radionuclides and other contaminants in glacial sediment (cryoconite) and implications for downstream aquatic ecosystems. Sci. Rep. 2019, 9, 12531. [Google Scholar] [CrossRef]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology 2015, 251, 122–136. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K. Assemblages of geomorphic units: A building block approach to analysis and interpretation of river character, behaviour, condition and recovery. Earth Surf. Process. Landf. 2021, 47, 92–108. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Armston, J.; Stiller, I.; Muir, J. Assessing the repeatability of terrestrial laser scanning for monitoring gully topography: A case study from Aratula, Queensland, Australia. Geomorphology 2016, 262, 24–36. [Google Scholar] [CrossRef]
- Vericat, D.; Wheaton, J.M.; Brasington, J. Revisiting the Morphological Approach. In Gravel-Bed Rivers: Process Disasters; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 121–158. [Google Scholar] [CrossRef]
- Williams, R.D.; Brasington, J.; Vericat, D.; Hicks, D.M. Hyperscale terrain modelling of braided rivers: Fusing mobile terrestrial laser scanning and optical bathymetric mapping. Earth Surf. Process. Landf. 2014, 39, 167–183. [Google Scholar] [CrossRef]
- Entwistle, N.; Milan, D.J. Recent remote sensing applications for hydro and morphodynamic monitoring and modelling. Earth Surf. Process. Landf. 2018, 43, 2283–2291. [Google Scholar] [CrossRef]
- Shelar, R.; Shinde, S.; Pande, C.B.; Moharir, K.N.; Orimoloye, I.R.; Mishra, A.K.; Varade, A.M. Sub-watershed prioritization of Koyna river basin in India using multi criteria analytical hierarchical process, remote sensing and GIS techniques. Phys. Chem. Earth 2022, 128, 103219. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Remote sensing of rivers: The emergence of a subdiscipline in the river sciences. Earth Surf. Process. Landf. 2010, 35, 1867–1872. [Google Scholar] [CrossRef]
- Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A. Blaschke, TBig Earth data: Disruptive changes in Earth observation data management and analysis? Int. J. Digit. Earth 2020, 13, 832–850. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Gurnell, A.M.; Bertoldi, W.; Drake, N.A. An assessment of the degree to which Landsat TM data can support the assessment of fluvial dynamics, as revealed by changes in vegetation extent and channel position, along a large river. Geomorphology 2013, 202, 74–85. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Belletti, B.; Micotti, M.; Lastoria, B.; Casaioli, M.; Mariani, S.; Marchetti, G.; Bizzi, S. UAV-based training for fully fuzzy classification of Sentinel-2 fluvial scenes. Earth Surf. Process. Landf. 2020, 45, 3120–3140. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Nones, M.; Guerrero, M. Deriving Planform Morphology and Vegetation Coverage from Remote Sensing to Support River Management Applications. Front. Environ. Sci. 2021, 9, 657354. [Google Scholar] [CrossRef]
- Boothroyd, R.J.; Williams, R.A.; Hoey, T.; Barrett, B.; Prasojo, O.A. Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdiscip. Rev. Water 2020, 8, e21496. [Google Scholar] [CrossRef]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping. Int. J. Remote Sens. 2019, 40, 9026–9049. [Google Scholar] [CrossRef]
- Cavallo, C.; Papa, M.N.; Negro, G.; Gargiulo, M.; Ruello, G.; Vezza, P. Exploiting Sentinel-2 dataset to assess flow intermittency in non-perennial rivers. Sci. Rep. 2022, 12, 21756. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, G.; Bizzi, S.; Belletti, B.; Lastoria, B.; Comiti, F.; Carbonneau, P. Mapping riverbed sediment size from Sentinel-2 satellite data. Earth Surf. Process. Landf. 2022, 47, 2544–2559. [Google Scholar] [CrossRef]
- Popescu, M.C.; Sasu, L.M. Feature extraction, feature selection and machine learning for image classification: A case study. In Proceedings of the 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM, Bran, Romania, 22–24 May 2014; pp. 968–973. [Google Scholar] [CrossRef]
- Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C. Collaborative Supercomputing for Global Change Science. Eos Trans. Am. Geophys. Union 2011, 92, 109–110. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H. Tools in Fluvial Geomorphology: Problem Statement and Recent Practice. In Tools in Fluvial Geomorphology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005; pp. 1–22. [Google Scholar] [CrossRef]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Process. Landf. 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Zhai, X.; Oliver, A.; Kolesnikov, A.; Beyer, L. S4L: Self-Supervised Semi-Supervised Learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1476–1485. [Google Scholar]
- Yang, H.; Wang, Z.; Zhao, H.; Guo, Y. Water Body Extraction Methods Study Based on RS and GIS. Procedia Environ. Sci. 2011, 10, 2619–2624. [Google Scholar] [CrossRef]
- Shorewala, S.; Ashfaque, A.; Sidharth, R.; Verma, U. Weed Density and Distribution Estimation for Precision Agriculture Using Semi-Supervised Learning. IEEE Access 2021, 9, 27971–27986. [Google Scholar] [CrossRef]
- Tooke, T.R.; Coops, N.C.; Goodwin, N.R.; Voogt, J.A. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ. 2009, 113, 398–407. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Yang, J.; Little, E.; Zhou, Y. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin. Comput. Geosci. 2020, 138, 104450. [Google Scholar] [CrossRef]
- Camalan, S.; Cui, K.; Pauca, V.P.; Alqahtani, S.; Silman, M.; Chan, R.; Plemmons, R.J.; Dethier, E.N.; Fernandez, L.E.; Lutz, D.A. Change Detection of Amazonian Alluvial Gold Mining Using Deep Learning and Sentinel-2 Imagery. Remote Sens. 2022, 14, 1746. [Google Scholar] [CrossRef]
- Wieland, M.; Martinis, S. Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany. Int. J. Remote Sens. 2020, 41, 4742–4756. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Bussettini, M.; Comiti, F.; Gurnell, A.M.; Mao, L.; Nardi, L.; Vezza, P. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. Geomorphology 2017, 283, 143–157. [Google Scholar] [CrossRef]
- Farooq Ahmed, M.; David Rogers, J. Regional level landslide inventory maps of the Shyok River watershed, Northern Pakistan. Bull. Eng. Geol. Environ. 2016, 75, 563–574. [Google Scholar] [CrossRef]
- Dubey, R.; Nand Jha, V. Soil Erosion Evaluation through Prioritization of Shyok-Nubra Watershed using Morphometric, Principal Component and Weighted Sum Approaches. 2022. Available online: https://www.researchsquare.com/article/rs-1922043/v1 (accessed on 20 September 2023).
- Ragettli, S.; Bolch, T.; Pellicciotti, F. Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. Cryosphere 2016, 10, 2075–2097. [Google Scholar] [CrossRef]
- Pradhananga, N.S.; Kayastha, R.B.; Bhattarai, B.C.; Adhikari, T.R.; Pradhan, S.C.; Devkota, L.P.; Shrestha, A.B.; Mool, P.K. Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model. Ann. Glaciol. 2014, 55, 223–230. [Google Scholar] [CrossRef]
- Bhushan, S.; Syed, T.H.; Kulkarni, A.V.; Gantayat, P.; Agarwal, V. Quantifying Changes in the Gangotri Glacier of Central Himalaya: Evidence for Increasing Mass Loss and Decreasing Velocity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5295–5306. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1966, 58, 257–266. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Piégay, H.; Scorpio, V.; Bachmann, A.; Brousse, G.; Cavalli, M.; Comiti, F.; Crema, S.; Fernández, E.; Furdada, G.; et al. River widening in mountain and foothill areas during floods: Insights from a meta-analysis of 51 European Rivers. Sci. Total Environ. 2023, 903, 166103. [Google Scholar] [CrossRef]
- Singh, P.; Haritashya, U.K.; Ramasastri, K.S.; Kumar, N. Diurnal variations in discharge and suspended sediment concentration, including runoff-delaying characteristics, of the Gangotri Glacier in the Garhwal Himalayas. Hydrol. Process. 2005, 19, 1445–1457. [Google Scholar] [CrossRef]
- Clift, P.; Holbourn, A.; France-Lanord, C.; Zheng, H. Evolution of the Asian Monsoon. Eos 2020, 101. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.E.; Beard, K.H.; Cutler, A.; Hess, K.; Gibson, J.D.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, J.; Yang, D.; Li, J.; Ma, T.; Su, Y.; Shao, J.; Zhang, R. A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico. Remote Sens. 2022, 14, 5154. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1911, 37, 35–46. [Google Scholar] [CrossRef]
- Keuchel, J.; Naumann, S.; Heiler, M.; Siegmund, A. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sens. Environ. 2003, 86, 530–541. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, P.; Corpetti, T.; Zhao, L. WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models. Remote Sens. 2021, 13, 394. [Google Scholar] [CrossRef]
- Smith, C.S.R. Observing the Seasonal Evolution of Supraglacial Ponds in High Mountain Asia: A Supervised Classification. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Bozzolan, E.; Brenna, A.; Surian, N.; Bizzi, S. Quantifying the impact of the spatiotemporal resolution of the Sentinel 2 images on the interpretation of the active channel trajectory. An application on a dynamic river section in Northern Italy. Water Resour. Res. 2023; under review. [Google Scholar]
- Thornton, M.W.; Atkinson, P.M.; Holland, D.A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. Int. J. Remote Sens. 2007, 27, 473–491. [Google Scholar] [CrossRef]
- Zhang, J.; Rivard, B.; Sanchez-Azofeifa, A. Derivative spectral unmixing of hyperspectral data applied to mixtures of lichen and rock. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1934–1940. [Google Scholar] [CrossRef]
Sentinel-2 | Sample Polygons | Sample Pixels | |||
---|---|---|---|---|---|
Calibration 70% | Validation 30% | Calibration | Validation/Total Classified Pixels | ||
Nubra | 20 September 2019 | 360 | 140 | 2273 | 915 |
17 August 2020 | |||||
25 August 2021 | |||||
Saltoro | 16 August 2019 | 140 | 60 | 824 | 338 |
25 August 2020 | |||||
19 September 2021 | |||||
Langtang-Khola | 29 September 2020 | 140 | 60 | 671 | 431 |
Ganga-Bhagirathi | 20 August 2019 | ||||
13 September 2020 | NA | 60 | NA | 231 | |
18 September 2021 |
Proglacial Fluvial Features | Description |
---|---|
Base-flow channels | Wet (submerged) and dry (emerged) base-flow channels |
Vegetated surfaces | Vegetated surfaces within the channel (islands and banks) or adjacent to it (floodplains and terraces) |
Emerged sediments | Emerged and unvegetated areas, mostly represented by sediment bars |
Sentinel-2 | Sample Pixels | Overall Accuracy % | Kappa Coefficient | ||
---|---|---|---|---|---|
Validation/Total Classified Pixels | Correctly Classified Pixels | ||||
Nubra | 20 September 2019 | 915 | 879 | 96 | 0.94 |
17 August 2020 | 915 | 100 | 1 | ||
25 August 2021 | 913 | 99.7 | 0.99 | ||
Saltoro | 16 August 2019 | 338 | 320 | 94.6 | 0.92 |
25 August 2020 | 337 | 99.7 | 0.99 | ||
19 September 2021 | 297 | 87 | 0.82 | ||
Langtang-Khola | 29 September 2020 | 431 | 429 | 99 | 0.99 |
Ganga-Bhagirathi | 20 August 2019 | 231 | 214 | 92.6 | 0.87 |
13 September 2020 | 228 | 98.7 | 0.97 | ||
18 September 2021 | 223 | 96.5 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, Z.; Bizzi, S.; Comiti, F. Supervised Geomorphic Mapping of Himalayan Rivers Based on Sentinel-2 Data. Remote Sens. 2023, 15, 4687. https://doi.org/10.3390/rs15194687
Mukhtar Z, Bizzi S, Comiti F. Supervised Geomorphic Mapping of Himalayan Rivers Based on Sentinel-2 Data. Remote Sensing. 2023; 15(19):4687. https://doi.org/10.3390/rs15194687
Chicago/Turabian StyleMukhtar, Zarka, Simone Bizzi, and Francesco Comiti. 2023. "Supervised Geomorphic Mapping of Himalayan Rivers Based on Sentinel-2 Data" Remote Sensing 15, no. 19: 4687. https://doi.org/10.3390/rs15194687
APA StyleMukhtar, Z., Bizzi, S., & Comiti, F. (2023). Supervised Geomorphic Mapping of Himalayan Rivers Based on Sentinel-2 Data. Remote Sensing, 15(19), 4687. https://doi.org/10.3390/rs15194687