Analysis of Infrared Spectral Radiance of O2 1.27 μm Band Based on Space-Based Limb Detection
Abstract
:1. Introduction
2. Data and Methods
2.1. O2 (a1Δ) Emission in the Earth’s Atmosphere
2.2. O2 Limb Spectral Radiance
3. Results and Discussion
- The separation of spectral lines. There are thousands of molecular spectral lines, and the distribution is relatively dense; thus, it is necessary to select spectral lines with a better separation, so that the optical system can separate the target spectral lines [19]. They are relatively well separated from the neighboring lines, with a distance of more than 0.4 nm.
- The temperature sensitivity. It is necessary to select a group comprised of several spectral lines located in close proximity and with different temperature sensitivities to ensure the sensitivity of the spectral line intensity ratio to temperature [7]. Among these, spectral lines with a weak temperature sensitivity are used for the calibration of atmospheric parameters to determine the accuracy of measurement, and spectral lines with a strong temperature sensitivity are used for temperature inversion and atmospheric parameter measurements, with high sensitivity.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Y.; Sun, D.; Han, F.; Liu, H.; Zhao, R.; Zhen, J.; Zhang, N.; Chen, C.; Li, Z. Demonstration of daytime wind measurement by using mobile Rayleigh Doppler Lidar incorporating cascaded Fabry-Perot etalons. Opt. Express 2019, 27, 34230–34246. [Google Scholar] [CrossRef]
- Baumgarten, G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos. Meas. Tech. 2010, 3, 1509–1518. [Google Scholar] [CrossRef]
- Mitra, A.K.; Kundu, P.K.; Giri, R.K. A quantitative analysis of KALPANA-1 derived water vapor winds and its impact on NWP model. Meteorol. Atmos. Phys. 2013, 120, 29–44. [Google Scholar] [CrossRef]
- Šavli, M.; Kloe, J.; Marseille, G.J.; Rennie, M.; Žagar, N.; Wedi, N. The prospects for increasing the horizontal resolution of the Aeolus horizontal line-of-sight wind profiles. Q. J. R. Meteorol. Soc. 2019, 145, 3499–3515. [Google Scholar] [CrossRef]
- Shepherd, G.G. Development of wind measurement systems for future space missions. Acta Astronaut. 2015, 115, 206–217. [Google Scholar] [CrossRef]
- Englert, C.R.; Harlander, J.M.; Brown, C.M.; Marr, K.D.; Miller, I.J.; Stump, J.E.; Hancock, J.; Peterson, J.Q.; Kumler, J.; Morrow, W.H.; et al. Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration. Space Sci. Rev. 2017, 212, 553–584. [Google Scholar] [CrossRef] [PubMed]
- Kassi, S.; Guessoum, S.; Abanto, J.C.A.; Tran, H.; Campargue, A.; Mondelain, D. Temperature Dependence of the Collision-Induced Absorption Band of O2 Near 1.27 µm. J. Geophys. Res. Atmos. 2021, 126, e2021JD034860. [Google Scholar] [CrossRef]
- Boesche, E.; Stammes, P.; Bennartz, R. Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 223–239. [Google Scholar] [CrossRef]
- Tran, H.; Hartmann, J.M. An improved O2 A band absorption model and its consequences for retrievals of photon paths and surface pressures. J. Geophys. Res. 2008, 113, 18104. [Google Scholar] [CrossRef]
- Drouin, B.J.; Benner, D.C.; Brown, L.R.; Cich, M.J.; Crawford, T.J.; Devi, V.M.; Guillaume, A.; Hodges, J.T.; Mlawer, E.J.; Robichaud, D.J.; et al. Multispectrum analysis of the oxygen A-band. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 118–138. [Google Scholar] [CrossRef]
- de Laat, A.T.J.; Gloudemans, A.M.S.; Aben, I.; Schrijver, H. Global evaluation of SCIAMACHY and MOPITT carbon monoxide column differences for 2004–2005. J. Geophys. Res. 2010, 115, D06307. [Google Scholar] [CrossRef]
- Butz, A.; Guerlet, S.; Hasekamp, O.; Schepers, D.; Galli, A.; Aben, I.; Frankenberg, C.; Hartmann, J.M.; Tran, H.; Kuze, A.; et al. Toward accurate CO2 and CH4observations from GOSAT. Geophys. Res. Lett. 2011, 38, L14812. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Lee, H.; Cho, C.; Goo, T.-Y. Impact of Aerosol Property on the Accuracy of a CO2 Retrieval Algorithm from Satellite Remote Sensing. Remote Sens. 2016, 8, 322. [Google Scholar] [CrossRef]
- Sun, K.; Gordon, I.E.; Sioris, C.E.; Liu, X.; Chance, K.; Wofsy, S.C. Reevaluating the Use of O2 a1Δg Band in Space borne Remote Sensing of Greenhouse Gases. Geophys. Res. Lett. 2018, 45, 5779–5787. [Google Scholar] [CrossRef]
- Bertaux, J.-L.; Hauchecorne, A.; Lefèvre, F.; Bréon, F.-M.; Blanot, L.; Jouglet, D.; Lafrique, P.; Akaev, P. The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb. Atmos. Meas. Tech. 2020, 13, 3329–3374. [Google Scholar] [CrossRef]
- He, W.; Hu, X.; Wang, H.; Wang, D.; Li, J.; Li, F.; Wu, K. Influence of Scattered Sunlight for Wind Measurements with the O2(a1Δg) Dayglow. Remote Sens. 2022, 15, 232. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.F.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Jacob, D.J.; Turner, A.J.; Maasakkers, J.D.; Sheng, J.; Sun, K.; Liu, X.; Chance, K.; Aben, I.; McKeever, J.; Frankenberg, C. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Chem. Phys. 2016, 16, 14371–14396. [Google Scholar] [CrossRef]
- Fujisada, H.; Ward, W.E.; Lurie, J.B.; Gault, W.A.; Shepherd, G.G.; Weber, K.; Rowlands, N. Waves Michelson Interferometer: A visible/near-IR interferometer for observing middle atmosphere dynamics and constituents. In Sensors, Systems, and Next-Generation Satellites V; Society of Photo Optical: Bellingham, WA, USA, 2001. [Google Scholar]
- Wu, K.; Fu, D.; Feng, Y.; Li, J.; Hao, X.; Li, F. Simulation and application of the emission line O19P18 of O2(a1Δg) dayglow near 1.27 mum for wind observations from limb-viewing satellites. Opt. Express 2018, 26, 16984–16999. [Google Scholar] [CrossRef]
- He, W.; Wu, K.; Feng, Y.; Fu, D.; Chen, Z.; Li, F. The Radiative Transfer Characteristics of the O2 Infrared Atmospheric Band in Limb-Viewing Geometry. Remote Sens. 2019, 11, 2702. [Google Scholar] [CrossRef]
- Mondelain, D.; Kassi, S.; Campargue, A. Accurate Laboratory Measurement of the O2 Collision-Induced Absorption Band Near 1.27 μm. J. Geophys. Res. Atmos. 2019, 124, 414–423. [Google Scholar] [CrossRef]
- Yankovsky, V.; Manuilova, R.; Babaev, A.; Feofilov, A.; Kutepov, A. Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: Applications to water vapour retrievals from SABER/TIMED 6.3 μm radiance measurements. Int. J. Remote Sens. 2011, 32, 3065–3078. [Google Scholar] [CrossRef]
- Zarboo, A.; Bender, S.; Burrows, J.P.; Orphal, J.; Sinnhuber, M. Retrieval of O2(1Σ) and O2(1Δ) volume emission rates in the mesosphere and lower thermosphere using SCIAMACHY MLT limb scans. Atmos. Meas. Tech. 2018, 11, 473–487. [Google Scholar] [CrossRef]
- Martyshenko, K.V.; Yankovsky, V.A. IR band of O2 at 1.27 μm as the tracer of O3 in the mesosphere and lower thermosphere: Correction of the method. Geomagn. Aeron. 2017, 57, 229–241. [Google Scholar] [CrossRef]
- Yee, J.-H.; DeMajistre, R.; Morgan, F. The O2(b1Σ) dayglow emissions: Application to middle and upper atmosphere remote sensing1This article is part of a Special issue that honours the work of Dr. Donald M. Hunten FRSC who passed away in December 2010 after a very illustrious career. Can. J. Phys. 2012, 90, 769–784. [Google Scholar] [CrossRef]
- Coelho, F.R.; Ziemniczak, A.; Roy, S.P.; França, F.H.R. A new line-by-line methodology based on the spectral contributions of the bands. Int. J. Heat Mass Transf. 2021, 164, 120423. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Shine, K.P.; Sharpe, S.W.; Johnson, T.J.; Wallington, T.J.; Harrison, J.J.; Bernath, P.F.; Birk, M.; et al. Infrared absorption cross-sections in HITRAN2016 and beyond: Expansion for climate, environment, and atmospheric applications. J. Quant. Spectrosc. Radiat. Transf. 2019, 230, 172–221. [Google Scholar] [CrossRef]
- Humlicek, J. Reprint of: Optimized computation of the voigt and complex probability functions. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1545–1552. [Google Scholar]
- Schreier, F. The Voigt and complex error function: A comparison of computational methods. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 743–762. [Google Scholar] [CrossRef]
- Berk, A.; Hawes, F. Validation of MODTRAN®6 and its line-by-line algorithm. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 542–556. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Bai, L.; Li, J.; Huang, C.; Guo, L. Analysis of Infrared Spectral Radiance of O2 1.27 μm Band Based on Space-Based Limb Detection. Remote Sens. 2023, 15, 4648. https://doi.org/10.3390/rs15194648
Bai J, Bai L, Li J, Huang C, Guo L. Analysis of Infrared Spectral Radiance of O2 1.27 μm Band Based on Space-Based Limb Detection. Remote Sensing. 2023; 15(19):4648. https://doi.org/10.3390/rs15194648
Chicago/Turabian StyleBai, Jingyu, Lu Bai, Jinlu Li, Chao Huang, and Lixin Guo. 2023. "Analysis of Infrared Spectral Radiance of O2 1.27 μm Band Based on Space-Based Limb Detection" Remote Sensing 15, no. 19: 4648. https://doi.org/10.3390/rs15194648
APA StyleBai, J., Bai, L., Li, J., Huang, C., & Guo, L. (2023). Analysis of Infrared Spectral Radiance of O2 1.27 μm Band Based on Space-Based Limb Detection. Remote Sensing, 15(19), 4648. https://doi.org/10.3390/rs15194648