PSDefoPAT—Persistent Scatterer Deformation Pattern Analysis Tool
Abstract
:1. Motivation
2. Background
2.1. Persistent and Distributed Scatterers
2.2. Ground Motion Services
2.2.1. National Endeavors
2.2.2. European Ground Motion Service
- Basic or L2a.
- Calibrated or L2b.
- Ortho or L3.
- A-EPND.
3. PSDefoPAT—Time Series Analysis Approach
3.1. Theoretical Background on Time Series Analysis
3.1.1. De-Noising a Time Series
3.1.2. Estimation of the Seasonal Component
3.1.3. Estimation of the Trend Component
- (1)
- Generating the best PLR for the given time series with K segments.
- (2)
- Generating the best PLR of the given time series so that the maximum error of each approximated segment does not exceed a user-specified threshold.
- (3)
- Generating the best PLR of the given time series so that the maximum combined error of all approximated segments does not exceed a user-specified threshold.
3.1.4. Evaluation of the Best-Fitting Model and the Residual Component
3.2. User Interface
- (1)
- The maximum number of segments to be used in the PLR of the time series.
- (2)
- The maximum error used to estimate the segments of a PLR.
- (3)
- The type of segmentation algorithm to be used.
4. Demonstration Cases
- (1)
- Campi Flegrei.
- (2)
- Volturno Coastal River Basin.
- (3)
- Parapeiros-Peiros Dam.
- (4)
- Fehmarnsund Bridge.
4.1. Campi Flegrei
4.2. Volturno River Coastal Plain
4.3. Parapeiros–Peiros Dam
4.4. Fehmarnsund Bridge
5. Discussion
- (1)
- Campi Flegrei.
- (2)
- Volturno Coastal River Basin.
- (3)
- Parapeiros–Peiros Dam.
- (4)
- Fehmarnsund Bridge.
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Bürgmann, R.; Thatcher, W.; Bickford, M. Space geodesy: A revolution in crustal deformation measurements of tectonic processes. Geol. Soc. Am. Spec. Pap. 2013, 500, 397–430. [Google Scholar]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; López-Sánchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote. Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote. Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote. Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Adam, N.; Parizzi, A.; Eineder, M.; Crosetto, M. Practical persistent scatterer processing validation in the course of the Terrafirma project. J. Appl. Geophys. 2009, 69, 59–65. [Google Scholar] [CrossRef]
- Alberti, S.; Ferretti, A.; Leoni, G.; Margottini, C.; Spizzichino, D. Surface deformation data in the archaeological site of Petra from medium-resolution satellite radar images and SqueeSAR™ algorithm. J. Cult. Herit. 2017, 25, 10–20. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The evolution of wide-area DInSAR: From regional and national services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Costantini, M.; Minati, F.; Trillo, F.; Ferretti, A.; Passera, E.; Rucci, A.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Eineder, M.; et al. EGMS: Europe-wide ground motion monitoring based on full resolution InSAR processing of all Sentinel-1 acquisitions. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5093–5096. [Google Scholar]
- Berti, M.; Corsini, A.; Franceschini, S.; Iannacone, J. Automated classification of Persistent Scatterers Interferometry time series. Nat. Hazards Earth Syst. Sci. 2013, 13, 1945–1958. [Google Scholar] [CrossRef]
- Costantini, M.; Zhu, M.; Huang, S.; Bai, S.; Cui, J.; Minati, F.; Vecchioli, F.; Jin, D.; Hu, Q. Automatic detection of building and infrastructure instabilities by spatial and temporal analysis of InSAR measurements. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2224–2227. [Google Scholar]
- Evers, M.; Thiele, A.; Hammer, H.; Cadario, E.; Schulz, K.; Hinz, S. Concept to Analyze the Displacement Time Series of Individual Persistent Scatterers. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2021, 43, 147–154. [Google Scholar] [CrossRef]
- Evers, M.; Thiele, A.; Hammer, H.; Hinz, S. Psdefopat–Towards automatic model based psi post-processing. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 3, 107–114. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 2. [Google Scholar]
- Zebker, H.A.; Rosen, P.A.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res. Solid Earth 1997, 102, 7547–7563. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote. Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Hooper, A.J. Persistent Scatter Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Proceedings (IEEE Cat. No. 03CH37477). Volume 7, pp. 4362–4364. [Google Scholar]
- Kampes, B.M.; Hanssen, R.F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 2446–2453. [Google Scholar] [CrossRef]
- Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 12. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote. Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Kalia, A.C. Classification of landslide activity on a regional scale using persistent scatterer interferometry at the moselle valley (Germany). Remote Sens. 2018, 10, 1880. [Google Scholar] [CrossRef]
- Cetin, E.; Cakir, Z.; Meghraoui, M.; Ergintav, S.; Akoglu, A.M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst. 2014, 15, 2883–2894. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR analysis in the Pisa urban area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Tomás, R.; Cano, M.; Garcia-Barba, J.; Vicente, F.; Herrera, G.; Lopez-Sanchez, J.M.; Mallorquí, J. Monitoring an earthfill dam using differential SAR interferometry: La Pedrera dam, Alicante, Spain. Eng. Geol. 2013, 157, 21–32. [Google Scholar] [CrossRef]
- Sousa, J.; Bastos, L. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Nat. Hazards Earth Syst. Sci. 2013, 13, 659–667. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Neusser, K. Time Series Econometrics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Walczak, B.; Massart, D. Noise suppression and signal compression using the wavelet packet transform. Chemom. Intell. Lab. Syst. 1997, 36, 81–94. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Motard, R.L.; Joseph, B. Wavelet Applications in Chemical Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 272. [Google Scholar]
- Mallat, S.G. Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech, Signal Process. 1989, 37, 2091–2110. [Google Scholar] [CrossRef]
- Cohen, R. Signal denoising using wavelets. Proj. Rep. Dep. Electr. Eng. Tech. Isr. Inst. Technol. Haifa 2012, 890, 1–27. [Google Scholar]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Fisher, R.A. Tests of significance in harmonic analysis. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1929, 125, 54–59. [Google Scholar]
- Ahdesmaki, M.; Lahdesmaki, H.; Yli-Harja, O. Robust Fisher’s test for periodicity detection in noisy biological time series. In Proceedings of the 2007 IEEE International Workshop on Genomic Signal Processing and Statistics, Tuusula, Finland, 10–12 June 2007; pp. 1–4. [Google Scholar]
- Ott, R.L.; Longnecker, M.T. An Introduction to Statistical Methods and Data Analysis; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. Segmenting time series: A survey and novel approach. In Data Mining in Time Series Databases; World Scientific: Singapore, 2004; pp. 1–21. [Google Scholar]
- Malash, G.F.; El-Khaiary, M.I. Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem. Eng. J. 2010, 163, 256–263. [Google Scholar] [CrossRef]
- Lovrić, M.; Milanović, M.; Stamenković, M. Algoritmic methods for segmentation of time series: An overview. J. Contemp. Econ. Bus. Issues 2014, 1, 31–53. [Google Scholar]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Polcari, M.; Borgstrom, S.; Del Gaudio, C.; De Martino, P.; Ricco, C.; Siniscalchi, V.; Trasatti, E. Thirty years of volcano geodesy from space at Campi Flegrei caldera (Italy). Sci. Data 2022, 9, 728. [Google Scholar] [CrossRef]
- Matano, F.; Sacchi, M.; Vigliotti, M.; Ruberti, D. Subsidence trends of volturno river coastal plain (northern campania, southern italy) inferred by sar interferometry data. Geosciences 2018, 8, 8. [Google Scholar] [CrossRef]
- Dounias, G.; Lazaridou, S.; Sakellariou, S.; Somakos, L.; Skourlis, K.; Mihas, S. The behavior of Asteri Dam on Parapeiros River during first filling, Greece. In Proceedings of the 91st International Commission of Large Dams Annual Meeting, International Commission of Large Dams, Gothenburg, Sweden, 20 June 2023; pp. 1–10. [Google Scholar]
- Teich, S. Die Netzwerkbogenbrücke, ein überaus effizientes Brückentragwerk–tragwirkung und Konstruktion. Stahlbau 2005, 74, 596–605. [Google Scholar] [CrossRef]
MP | Periodic Component | Trend Component | R | Mean Velocity |
---|---|---|---|---|
MP A | 0.996 | 83.9 | ||
MP B | - | 0.998 | 9.1 | |
MP C | 7.93 mm | 5.81t + 0.14t − 16.53 mm | 0.982 | −2.3 |
MP D | 4.75 mm | 6.98t + 0.19t − 6.98 mm | 0.979 | −6.5 |
MP E | - | −32.01t + 0.67t− 5.38 mm | 0.997 | −27.1 |
MP F | - | 0.903 | −1.9 | |
MP G | −5.35 mm | 0.827 | 0.6 | |
MP H | 3.93 mm | 0.828 | −0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evers, M.; Thiele, A.; Hammer, H.; Hinz, S. PSDefoPAT—Persistent Scatterer Deformation Pattern Analysis Tool. Remote Sens. 2023, 15, 4646. https://doi.org/10.3390/rs15194646
Evers M, Thiele A, Hammer H, Hinz S. PSDefoPAT—Persistent Scatterer Deformation Pattern Analysis Tool. Remote Sensing. 2023; 15(19):4646. https://doi.org/10.3390/rs15194646
Chicago/Turabian StyleEvers, Madeline, Antje Thiele, Horst Hammer, and Stefan Hinz. 2023. "PSDefoPAT—Persistent Scatterer Deformation Pattern Analysis Tool" Remote Sensing 15, no. 19: 4646. https://doi.org/10.3390/rs15194646
APA StyleEvers, M., Thiele, A., Hammer, H., & Hinz, S. (2023). PSDefoPAT—Persistent Scatterer Deformation Pattern Analysis Tool. Remote Sensing, 15(19), 4646. https://doi.org/10.3390/rs15194646