Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Assessment of Carbon Storage Based on the InVEST Model
2.3.2. Prediction of Future LUCC Based on the PLUS Model
3. Results
3.1. LUCC Dynamics from 2000 to 2020 in the Nanchang Urban Agglomeration
3.2. Analysis of LUCC Prediction Results in 2040
3.3. Carbon Storage Dynamics from 2000 to 2020 in the Nanchang Urban Agglomeration
3.4. Prediction of Carbon Storage in Nanchang Urban Agglomeration in 2040
4. Discussion
4.1. Influence of Diverse Driving Factors on LUCC
4.2. Impact of LUCC on Carbon Storage
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. Hum. Policy Dimens. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, N.; Kong, Z.; Ong, W.-J.; Zhao, X. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S., 3rd; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Buonincontri, M.P.; Bosso, L.; Smeraldo, S.; Chiusano, M.L.; Pasta, S.; Di Pasquale, G. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: Evidence from archaeo-anthracology and spatial analyses. Sci. Total Environ. 2023, 877, 162893. [Google Scholar] [CrossRef] [PubMed]
- Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P.H.M.; D’Hooge, D.R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K.M. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 2021, 84, 100901. [Google Scholar] [CrossRef]
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Shih, C.F.; Zhang, T.; Li, J.; Bai, C. Powering the Future with Liquid Sunshine. Joule 2018, 2, 1925–1949. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef]
- Poorter, L.; van der Sande, M.T.; Thompson, J.; Arets, E.J.M.M.; Alarcon, A.; Alvarez-Sanchez, J.; Ascarrunz, N.; Balvanera, P.; Barajas-Guzman, G.; Boit, A.; et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 2015, 24, 1314–1328. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Wolf, B.; Kiese, R.; Chen, D.; Butterbach-Bahl, K. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Chang. Biol. 2018, 24, 5919–5932. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Wu, H.; Hao, Y. Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China? Technol. Forecast. Soc. Chang. 2022, 185, 122068. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Chang, S.X.; Yang, Y.; Fu, S.; Jiang, P.; Luo, Y.; Yang, M.; Chen, Z.; Hu, S.; et al. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon degrading microbial activity. Soil Biol. Biochem. 2018, 122, 173–185. [Google Scholar] [CrossRef]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Holmes, K.W.; Wherrett, A.; Keating, A.; Murphy, D.V. Meeting bulk density sampling requirements efficiently to estimate soil carbon stocks. Soil Res. 2011, 49, 680–695. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Zhang, Y.; Hui, J.; Qin, Q.; Sun, Y.; Zhang, T.; Sun, H.; Li, M. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sens. Environ. 2021, 267, 112724. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
- Sun, L.-L.; Cui, H.-J.; Ge, Q.-S. Will China achieve its 2060 carbon neutral commitment from the provincial perspective? Adv. Clim. Chang. Res. 2022, 13, 169–178. [Google Scholar] [CrossRef]
- Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 2022, 603, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, J.; Zhao, J.; Xue, F.; Li, Q.; Fang, K.; Shao, Z.; Li, S.; Zhou, J. Exploring potential of urban land-use management on carbon emissions—A case of Hangzhou, China. Ecol. Indic. 2023, 146, 109902. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Pala, L.P.R.; Wang, Q.; Kolb, G.; Liessel, V. Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model. Renew. Energy 2017, 101, 484–492. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Zhang, C.-y.; Zhao, L.; Zhang, H.; Chen, M.-n.; Fang, R.-y.; Yao, Y.; Zhang, Q.-p.; Wang, Q. Spatial-temporal characteristics of carbon emissions from land use change in Yellow River Delta region, China. Ecol. Indic. 2022, 136, 108623. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Jepsen, M.R.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Jia, M.M.; Wang, Z.M.; Mao, D.H.; Ren, C.Y.; Song, K.S.; Zhao, C.P.; Wang, C.; Xiao, X.M.; Wang, Y.Q. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef]
- Li, J.; Wen, Y.; Li, X.; Li, Y.; Yang, X.; Lin, Z.; Song, Z.; Cooper, J.M.; Zhao, B. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res. 2018, 175, 281–290. [Google Scholar] [CrossRef]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Zhao, Y.; Zhao, E. China’s carbon-emissions trading: Overview, challenges and future. Renew. Sustain. Energy Rev. 2015, 49, 254–266. [Google Scholar] [CrossRef]
- Ma, L.; Xiang, L.G.; Wang, C.; Chen, N.C.; Wang, W. Spatiotemporal evolution of urban carbon balance and its response to new-type urbanization: A case of the middle reaches of the Yangtze River Urban Agglomerations, China. J. Clean. Prod. 2022, 380, 135122. [Google Scholar] [CrossRef]
- Huang, S.Z.; Gan, Y.; Zhang, X.; Chen, N.C.; Wang, C.; Gu, X.H.; Ma, J.J.; Niyogi, D. Urbanization Amplified Asymmetrical Changes of Rainfall and Exacerbated Drought: Analysis Over Five Urban Agglomerations in the Yangtze River Basin, China. Earths Future 2023, 11, e2022EF003117. [Google Scholar] [CrossRef]
- Wang, L.; Yi, C.; Xu, X.; Schuett, B.; Liu, K.; Zhou, L. Soil properties in two soil profiles from terraces of the Nam Co Lake in Tibet, China. J. Mt. Sci. 2009, 6, 354–361. [Google Scholar] [CrossRef]
- Niu, D.; Wang, S.; Ouyang, Z. Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern China. J. Environ. Sci. 2009, 21, 801–805. [Google Scholar] [CrossRef]
- Gray, R.S. Agriculture, transportation, and the COVID-19 crisis. Can. J. Agric. Econ. Rev. Can. D Agroecon. 2020, 68, 239–243. [Google Scholar] [CrossRef]
- Piquer-Rodriguez, M.; Butsic, V.; Gaertner, P.; Macchi, L.; Baumann, M.; Pizarro, G.G.; Volante, J.N.; Gasparri, I.N.; Kuemmerle, T. Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Appl. Geogr. 2018, 91, 111–122. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Gomez, N.; Pinto, P.; Merian, P. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For. Ecol. Manag. 2013, 303, 61–71. [Google Scholar] [CrossRef]
- Messerli, B.; Viviroli, D.; Weingartner, R. Mountains of the world: Vulnerable Water Towers for the 21(st) century. Ambio 2004, 33, 29–34. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenoeder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. Hum. Policy Dimens. 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Reis, R.S.; Salvo, D.; Ogilvie, D.; Lambert, E.V.; Goenka, S.; Brownson, R.C.; Lancet Phys Act Series, E. Scaling up physical activity interventions worldwide: Stepping up to larger and smarter approaches to get people moving. Lancet 2016, 388, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Sklar, F.H.; Chimney, M.J.; Newman, S.; McCormick, P.; Gawlik, D.; Miao, S.L.; McVoy, C.; Said, W.; Newman, J.; Coronado, C.; et al. The ecological-societal underpinnings of Everglades restoration. Front. Ecol. Environ. 2005, 3, 161–169. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Lazaro-Lobo, A.; Ruiz-Benito, P.; Cruz-Alonso, V.; Castro-Diez, P. Quantifying carbon storage and sequestration by native and non-native forests under contrasting climate types. Glob. Chang. Biol. 2023, 29, 4530–4542. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Meyer-Aurich, A.; Olesen, J.E.; Chirinda, N.; Hermansen, J.E. Carbon footprints of crops from organic and conventional arable crop rotations—Using a life cycle assessment approach. J. Clean. Prod. 2014, 64, 609–618. [Google Scholar] [CrossRef]
- Ye, H.; Li, Y.; Shi, D.; Meng, D.; Zhang, N.; Zhao, H. Evaluating the potential of achieving carbon neutrality at the neighborhood scale in urban areas. Sustain. Cities Soc. 2023, 97, 104764. [Google Scholar] [CrossRef]
- Elliot, T.; Bertrand, A.; Almenar, J.B.; Petucco, C.; Proenca, V.; Rugani, B. Spatial optimisation of urban ecosystem services through integrated participatory and multi-objective integer linear programming. Ecol. Model. 2019, 409, 108774. [Google Scholar] [CrossRef]
Category | Data | Data Resource | Original Resolution (m) |
---|---|---|---|
Land use data | Land use in 2000 and 2020 | GlOBELAND30 dataset (http://www.globallandcover.com/, accessed on 14 April 2022) | 30 |
Natural factors | DEM | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 14 April 2022) | 90 |
Slope | 90 | ||
Temperature | Data Center for Resources and Environmental Sciences ofthe Chinese Academy of Sciences (https://www.resdc.cn, accessed on 14 April 2022) | 30 | |
Precipitation | 30 | ||
Soil type | 30 | ||
Socioeconomic factors | Population | Data Center for Resources and Environmental Sciences ofthe Chinese Academy of Sciences (https://www.resdc.cn, accessed on 14 April 2022) | 30 |
GDP | 30 | ||
Distance to primary roads | OpenStreetMap (https://www.openstreetmap.org/, accessed on 14 April 2022) | 1000 | |
Distance to secondary roads | 1000 | ||
Distance to tertiary roads | 1000 | ||
Distance to rivers | National Catalogue Service for Geographic Information (https://www.webmap.cn/, accessed on 14 April 2022) | 1000 |
Land Use Type | Aboveground Carbon Density | Belowground Carbon Density | Soil Organic Carbon Density | Dead Organic Matter Carbon Density | Total Carbon Density |
---|---|---|---|---|---|
Cropland | 3.55 | 2.09 | 32.34 | 0.54 | 38.52 |
Woodland | 46.9 | 11.2 | 42.3 | 0.69 | 101.09 |
Grassland | 1.02 | 8.45 | 52.52 | 0.43 | 62.42 |
Water body | 0.08 | 0.07 | 0.00 | 0.00 | 0.15 |
Built-up land | 1.49 | 0.35 | 0.04 | 0.00 | 1.88 |
Unused land | 0.36 | 0.53 | 1.81 | 0.03 | 2.73 |
Land Use Type | Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|
Natural development neighborhood factor | 0.07 | 0.11 | 0.01 | 0.29 | 1.00 | 0.09 |
Cropland protection neighborhood factor | 0.28 | 0.13 | 0.03 | 0.30 | 0.86 | 0.09 |
Ecological protection neighborhood factor | 0.07 | 0.31 | 0.10 | 0.34 | 0.95 | 0.09 |
ND | CP | EP | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
e | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Area | Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|
Cropland | 84.85% | 4.45% | 1.83% | 2.80% | 6.05% | 0.02% |
Woodland | 4.88% | 88.85% | 3.87% | 1.37% | 1.02% | 0.00% |
Grassland | 12.40% | 23.67% | 51.62% | 6.25% | 5.99% | 0.07% |
Water body | 4.90% | 0.89% | 0.60% | 92.33% | 1.03% | 0.24% |
Built-up land | 9.84% | 0.81% | 0.52% | 1.17% | 87.65% | 0.01% |
Unused land | 10.19% | 0.29% | 7.52% | 53.10% | 2.28% | 26.63% |
Type | Year | Development Scenario | Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|---|
Area (km2) | 2020 | - | 17,728.72 | 18,179.20 | 2718.48 | 5953.32 | 2480.28 | 62.73 |
2040 | ND | 16,810.08 | 17,657.31 | 2485.21 | 6474.73 | 3653.73 | 41.67 | |
CP | 18,458.95 | 17,657.32 | 2485.22 | 5836.07 | 2648.12 | 37.05 | ||
EP | 16,810.08 | 18,650.00 | 2550.38 | 6279.42 | 2795.79 | 37.05 | ||
Annual Rate of Change (%) | 2040 | ND | −5.18% | −2.87% | −8.58% | 8.76% | 47.31% | −33.57% |
CP | 4.12% | −2.87% | −8.58% | −1.97% | 6.77% | −40.94% | ||
EP | −5.18% | 2.59% | −6.18% | 5.48% | 12.72% | −40.94% |
Scenario | Cropland | Woodland | Grassland | Water Body | Built-Up Land | Unused Land | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | CS (10⁴ t) | Area (km2) | CS (10⁴ t) | Area (km2) | CS (10⁴ t) | Area (km2) | CS (10⁴ t) | Area (km2) | CS (10⁴ t) | Area (km2) | CS (10⁴ t) | |
2000 | 18,925.02 | 72.90 | 18,624.61 | 188.28 | 3102.30 | 19.36 | 5279.93 | 0.08 | 1027.54 | 0.19 | 164.27 | 0.04 |
2020 | 17,728.72 | 68.29 | 18,179.20 | 183.77 | 2718.48 | 16.97 | 5953.32 | 0.09 | 2480.28 | 0.47 | 62.73 | 0.02 |
ND | 16,810.08 | 64.75 | 17,657.31 | 178.50 | 2485.21 | 15.51 | 6474.73 | 0.10 | 3653.73 | 0.69 | 41.67 | 0.01 |
CP | 18,458.95 | 71.10 | 17,657.32 | 178.50 | 2485.22 | 15.51 | 5836.07 | 0.09 | 2648.12 | 0.50 | 37.05 | 0.01 |
EP | 16,810.08 | 64.75 | 18,650.00 | 188.53 | 2550.38 | 15.92 | 6279.42 | 0.09 | 2795.79 | 0.53 | 37.05 | 0.01 |
Land Use Type Conversion | Area (km2) | Changes in Vegetation Carbon Storage (×10⁶ t) | Changes in Soil Carbon Storage (×10⁶ t) | Total (×10⁶ t) | |
---|---|---|---|---|---|
Cropland | Wooldland | 842.379 | 4.419 | 0.852 | 5.271 |
Grassland | 346.527 | 0.133 | 0.695 | 0.828 | |
Water body | 530.218 | −0.291 | −1.743 | −2.034 | |
Built-up land | 1144.676 | −0.435 | −3.759 | −4.194 | |
Unused land | 3.110 | −0.001 | −0.010 | −0.011 | |
Subtotal | 2866.910 | 3.824 | −3.965 | −0.141 | |
Wooldland | Cropland | 909.391 | −4.771 | −0.919 | −5.690 |
Grassland | 720.920 | −3.506 | 0.718 | −2.788 | |
Water body | 255.137 | −1.479 | −1.097 | −2.575 | |
Built-up land | 190.862 | −1.074 | −0.820 | −1.894 | |
Unused land | 0.805 | −0.005 | −0.003 | −0.008 | |
Subtotal | 2077.115 | −10.833 | −2.121 | −12.955 | |
Grassland | Cropland | 384.664 | −0.147 | −0.772 | −0.919 |
Wooldland | 734.275 | 3.571 | −0.731 | 2.839 | |
Water body | 193.863 | −0.181 | −1.027 | −1.207 | |
Built-up land | 185.907 | −0.142 | −0.984 | −1.125 | |
Unused land | 2.085 | −0.002 | −0.011 | −0.012 | |
Subtotal | 1500.793 | 3.099 | −3.524 | −0.425 | |
Water body | Cropland | 258.840 | 0.142 | 0.851 | 0.993 |
Wooldland | 46.742 | 0.271 | 0.201 | 0.472 | |
Grassland | 31.910 | 0.030 | 0.169 | 0.199 | |
Built-up land | 54.471 | 0.009 | 0.000 | 0.009 | |
Unused land | 12.852 | 0.001 | 0.002 | 0.003 | |
Subtotal | 404.814 | 0.453 | 1.224 | 1.676 | |
Built-up land | Unused land | 101.111 | 0.038 | 0.332 | 0.370 |
Wooldland | 8.344 | 0.047 | 0.036 | 0.083 | |
Grassland | 5.322 | 0.004 | 0.028 | 0.032 | |
Water body | 11.990 | −0.002 | 0.000 | −0.002 | |
Unused land | 0.141 | 0.000 | 0.000 | 0.000 | |
Subtotal | 126.907 | 0.087 | 0.396 | 0.483 | |
Unused land | Unused land | 16.738 | 0.008 | 0.052 | 0.060 |
Wooldland | 0.482 | 0.003 | 0.002 | 0.005 | |
Grassland | 12.347 | 0.011 | 0.063 | 0.074 | |
Water body | 87.224 | −0.006 | −0.016 | −0.023 | |
Built-up land | 3.743 | 0.000 | −0.001 | 0.000 | |
Subtotal | 120.535 | 0.015 | 0.100 | 0.116 | |
Total | 7097.073 | −3.355 | −7.891 | −11.245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Huang, M.; Gong, D.; Lin, H.; Fan, Y.; Du, W. Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sens. 2023, 15, 4645. https://doi.org/10.3390/rs15194645
Fu Y, Huang M, Gong D, Lin H, Fan Y, Du W. Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sensing. 2023; 15(19):4645. https://doi.org/10.3390/rs15194645
Chicago/Turabian StyleFu, Yuheng, Min Huang, Daohong Gong, Hui Lin, Yewen Fan, and Wenying Du. 2023. "Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration" Remote Sensing 15, no. 19: 4645. https://doi.org/10.3390/rs15194645
APA StyleFu, Y., Huang, M., Gong, D., Lin, H., Fan, Y., & Du, W. (2023). Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sensing, 15(19), 4645. https://doi.org/10.3390/rs15194645