Performance Assessment of Irrigation Projects in Nepal by Integrating Landsat Images and Local Data
Abstract
:1. Introduction
- Develop a locally trained cropland classification map and quantify changes in cropland areas from 2006 to 2022 using Landsat 5 TM and Landsat 8 OLI for irrigation projects in Nepal;
- Assess the performance of irrigation projects by utilizing remote-sensing-derived irrigated area data in conjunction with local data;
- Analyze the effectiveness of global datasets at the local or regional levels by comparing the global cropland map with our locally trained map.
2. Study Area
3. Materials and Methods
3.1. Methodological Framework
3.2. Remote Sensing
3.2.1. Data Used
3.2.2. Google Earth Engine
3.2.3. Image Preprocessing
Image Mosaicking
Cloud Masking
Scaling Factor
3.2.4. Image Composites
3.2.5. Spectral Indices
3.2.6. Spectral Matching
3.2.7. Feature Extraction
- ▪
- Agriculture class—424;
- ▪
- Non-Agriculture class—898;
- ▪
- Forest/Pastures class—222.
3.2.8. Cropland Classification
3.2.9. Smoothing of Classified Image
3.2.10. Delivered Irrigation Area
3.2.11. Validation
- ▪
- Agriculture class—290;
- ▪
- Non-Agriculture class—139;
- ▪
- Forest/Pastures class—127.
3.2.12. Accuracy Assessment
- r = number of rows in the error matrix;
- xii = number of observations in row i and column i;
- xi+ = total number of observations in row i;
- x+i = total number of observations in column i;
- N = total number of observations included in matrix.
3.3. Performance Assessment of Irrigation Projects
4. Results
4.1. Accuracy Assessment of the Classifier
4.2. Cropland Classification
4.3. Recorded vs. Satellite-Derived Irrigated Areas
4.4. Comparison of Classification Result with Globally Trained Cropland Classification
4.5. Performance Assessment of the Project
4.5.1. Performance Indicators
Yield
Irrigation Service Fee Collection
4.5.2. Variables Impacting Project Performance
Project Annual Budget
Discharge of Main Canal
Amount of Precipitation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Higginbottom, T.P.; Adhikari, R.; Dimova, R.; Redicker, S.; Foster, T. Performance of Large-Scale Irrigation Projects in Sub-Saharan Africa. Nat. Sustain. 2021, 4, 501–508. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.-P.; Pickens, A.; Shen, Q.; Cortez, J. Global Maps of Cropland Extent and Change Show Accelerated Cropland Expansion in the Twenty-First Century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Yan, J.; Gagnon, A.S.; Riaz Khan, M.; Mumtaz, F. Mapping of Cropland, Cropping Patterns and Crop Types by Combining Optical Remote Sensing Images with Decision Tree Classifier and Random Forest. Geo-Spat. Inf. Sci. 2022, 1–19. [Google Scholar] [CrossRef]
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Vörösmarty, C. Global Water Assessment and Potential Contributions from Earth Systems Science. Aquat. Sci. 2002, 64, 328–351. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Global Estimates of Water Withdrawals and Availability under Current and Future “Business-as-Usual” Conditions. Hydrol. Sci. J. 2003, 48, 339–348. [Google Scholar] [CrossRef]
- Boucher, O.; Myhre, G.; Myhre, A. Direct Human Influence of Irrigation on Atmospheric Water Vapour and Climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Bendini, H.; Sanches, I.; Körting, T.; Fonseca, L.; Luiz, A.; Formaggio, A. Using landsat 8 image time series for crop mapping in a region of Cerrado, Brazil. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 845–850. [Google Scholar] [CrossRef]
- Traoré, F.; Bonkoungou, J.; Compaoré, J.; Kouadio, L.; Wellens, J.; Hallot, E.; Tychon, B. Using Multi-Temporal Landsat Images and Support Vector Machine to Assess the Changes in Agricultural Irrigated Areas in the Mogtedo Region, Burkina Faso. Remote Sens. 2019, 11, 1442. [Google Scholar] [CrossRef]
- Koley, S.; Chockalingam, J. Sentinel 1 and Sentinel 2 for Cropland Mapping with Special Emphasis on the Usability of Textural and Vegetation Indices. Adv. Space Res. 2022, 69, 1768–1785. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating Global Cropland Extent with Multi-Year MODIS Data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Traoré, F.; Cornet, Y.; Denis, A.; Wellens, J.; Tychon, B. Monitoring the Evolution of Irrigated Areas with Landsat Images Using Backward and Forward Change Detection Analysis in the Kou Watershed, Burkina Faso. Geocarto Int. 2013, 28, 733–752. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Forkuor, G.; Kuenzer, C. Monitoring Agricultural Expansion in Burkina Faso over 14 Years with 30 m Resolution Time Series: The Role of Population Growth and Implications for the Environment. Remote Sens. 2017, 9, 132. [Google Scholar] [CrossRef]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely Sensed High Resolution Irrigated Area Mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef] [PubMed]
- Shahriar Pervez, M.; Budde, M.; Rowland, J. Mapping Irrigated Areas in Afghanistan over the Past Decade Using MODIS NDVI. Remote Sens. Environ. 2014, 149, 155–165. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Nelson, A. Mapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India). Water 2011, 3, 113–131. [Google Scholar] [CrossRef]
- Falanga Bolognesi, S.; Pasolli, E.; Belfiore, O.R.; De Michele, C.; D’Urso, G. Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy. Remote Sens. 2020, 12, 1275. [Google Scholar] [CrossRef]
- Awan, U.K.; Tischbein, B.; Conrad, C.; Martius, C.; Hafeez, M. Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin. Water Resour. Manag. 2011, 25, 2467–2485. [Google Scholar] [CrossRef]
- Sawadogo, A.; Kouadio, L.; Traoré, F.; Zwart, S.J.; Hessels, T.; Gündoğdu, K.S. Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators. ISPRS Int. J. Geo-Inf. 2020, 9, 484. [Google Scholar] [CrossRef]
- Zwart, S.J.; Leclert, L.M.C. A Remote Sensing-Based Irrigation Performance Assessment: A Case Study of the Office Du Niger in Mali. Irrig. Sci. 2010, 28, 371–385. [Google Scholar] [CrossRef]
- Bandara, K.M.P.S. Assessing Irrigation Performance by Using Remote Sensing; ITC dissertation; ITC: Enschede, The Netherlands, 2006; ISBN 978-90-8504-406-2. [Google Scholar]
- Kumar, K.A. Irrigation Performance Assessment of Left Bank Canal, Nagarjuna Sagar Project, India During Rabi Using Remote Sensing and GIS. Agrotechnology 2014, 3, 2. [Google Scholar] [CrossRef]
- Nikam, B.R.; Garg, V.; Thakur, P.K.; Aggarwal, S.P. Application of Remote Sensing and GIS in Performance Evaluation of Irrigation Project at Disaggregated Level. J. Indian Soc. Remote Sens. 2020, 48, 979–997. [Google Scholar] [CrossRef]
- Rimal, B.; Zhang, L.; Rijal, S. Crop Cycles and Crop Land Classification in Nepal Using MODIS NDVI. Remote Sens. Earth Syst. Sci. 2018, 1, 14–28. [Google Scholar] [CrossRef]
- Gumma, M.K.; Gauchan, D.; Nelson, A.; Pandey, S.; Rala, A. Temporal Changes in Rice-Growing Area and Their Impact on Livelihood over a Decade: A Case Study of Nepal. Agric. Ecosyst. Environ. 2011, 142, 382–392. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.; Li, S.; Liu, L. Spatiotemporal Changes in Agricultural Land Cover in Nepal over the Last 100 Years. J. Geogr. Sci. 2018, 28, 1519–1537. [Google Scholar] [CrossRef]
- Mishra, A.K.; Aithal, P.S. Performance Assessment of Irrigation: A Case from Nepal-Asia. Int. J. Manag. Technol. Soc. Sci. 2022, 7, 444–464. [Google Scholar] [CrossRef]
- Lam, W.F. Improving the Performance of Small-Scale Irrigation Systems: The Effects of Technological Investments and Governance Structure on Irrigation Performance in Nepal. World Dev. 1996, 24, 1301–1315. [Google Scholar] [CrossRef]
- Sapkota, A.; Pandit, H.P.; Shrestha, R. Hydraulic and Sediment Handling Performance Assessment of Rani Jamara Kulariya Irrigation Project (RJKIP) by Conjunctive Use of 1D and 3D Simulation Models. Naresuan Univ. Eng. J. 2016, 11, 1–6. [Google Scholar]
- IrrigationYearBook2010.11. Available online: https://www.dwri.gov.np/files/notice/20210804064529.pdf (accessed on 20 June 2023).
- IrrigationYearBook2011.12. Available online: https://www.dwri.gov.np/files/notice/20210804065111.pdf (accessed on 20 June 2023).
- IrrigationYearBook2012.13. Available online: https://www.dwri.gov.np/files/notice/20210804065143.pdf (accessed on 20 June 2023).
- IrrigationYearBook2013.14. Available online: https://www.dwri.gov.np/files/notice/20210804065226.pdf (accessed on 20 June 2023).
- IrrigationYearBook2014.15. Available online: https://www.dwri.gov.np/files/notice/20210804065257.pdf (accessed on 20 June 2023).
- IrrigationYearBook2015.16. Available online: https://www.dwri.gov.np/files/notice/20210804065358.pdf (accessed on 20 June 2023).
- IrrigationYearBook2016.17. Available online: https://www.dwri.gov.np/files/notice/20210804065428.pdf (accessed on 20 June 2023).
- IrrigationYearBook2017.18. Available online: https://www.dwri.gov.np/files/notice/20210804070853.pdf (accessed on 20 June 2023).
- IrrigationYearBook2018.19. Available online: https://www.dwri.gov.np/files/notice/20210804090308.pdf (accessed on 20 June 2023).
- IrrigationYearBook2019.20. Available online: https://www.dwri.gov.np/files/notice/20210804090444.pdf (accessed on 20 June 2023).
- IrrigationYearBook2021.22. Available online: https://pdf.ac/39UuAy (accessed on 20 June 2023).
- Landsat 5|U.S. Geological Survey. Available online: https://www.usgs.gov/landsat-missions/landsat-5 (accessed on 15 July 2023).
- Landsat 8|U.S. Geological Survey. Available online: https://www.usgs.gov/landsat-missions/landsat-8 (accessed on 15 July 2023).
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Pearson Education: Upper Saddle River, NJ, USA, 2015; ISBN 978-0-13-439516-6. [Google Scholar]
- Thenkabail, P.; Teluguntla, P.; Biggs, T.; Gumma, M.; Turral, H. Spectral Matching Techniques to Determine Historical Land Use/Land Cover (LULC) and Irrigated Areas Using Time-Series AVHRR Pathfinder Datasets in the Krishna River Basin, India. Photogramm. Eng. Remote Sens. 2007, 73, 1029–1040. [Google Scholar]
- Liu, X.; Skidmore, A.; Oosten, H. Integration of Classification Methods for Improvement of Land-Cover Map Accuracy. ISPRS J. Photogramm. Remote Sens. 2002, 56, 257–268. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative Assessment of the Measures of Thematic Classification Accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Smits, P.C.; Dellepiane, S.G.; Schowengerdt, R.A. Quality Assessment of Image Classification Algorithms for Land-Cover Mapping: A Review and a Proposal for a Cost-Based Approach. Int. J. Remote Sens. 1999, 20, 1461–1486. [Google Scholar] [CrossRef]
- Lunetta, R.S. Remote Sensing and Geographic Information System Data Integration: Error Sources and Research Issues. Photogramm. Eng. 1991, 57, 677–687. [Google Scholar]
- Islami, F.A.; Tarigan, S.D.; Wahjunie, E.D.; Dasanto, B.D. Accuracy Assessment of Land Use Change Analysis Using Google Earth in Sadar Watershed Mojokerto Regency. IOP Conf. Ser. Earth Environ. Sci. 2022, 950, 012091. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2071-72. Available online: https://moald.gov.np/wp-content/uploads/2022/04/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2071-72.pdf (accessed on 16 July 2023).
- STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2077-78. Available online: https://moald.gov.np/wp-content/uploads/2022/07/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2077-78.pdf (accessed on 16 July 2023).
- Agricultural-Statistics-Pocket-Book-2023-1.Pdf. Available online: https://moald.gov.np/wp-content/uploads/2023/08/Agricultural-Statistics-Pocket-book-2023-1.pdf (accessed on 12 September 2023).
- NEPAL STATISTICAL YEAR BOOK. 2015. Available online: https://nepalindata.com/resource/STATISTICAL-YEAR-BOOK-NEPAL-2015/ (accessed on 16 July 2023).
- NEPAL STATISTICAL YEAR BOOK. 2021. Available online: https://nepalindata.com/resource/NEPAL-STATISTICAL-YEAR-BOOK-2021/ (accessed on 16 July 2023).
- The Himalayan Damage to Morang-Sunsari Irrigation Project Estimated at Rs 800mln. Available online: https://thehimalayantimes.com/nepal/damage-morang-sunsari-irrigation-project-estimated-rs-800mln (accessed on 15 July 2023).
- Tabari, H.; Hosseinzadehtalaei, P.; Thiery, W.; Willems, P. Amplified Drought and Flood Risk Under Future Socioeconomic and Climatic Change. Earths Future 2021, 9, e2021EF002295. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The Future Intensification of Hourly Precipitation Extremes. Nat. Clim. Change 2017, 7, 48–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Chen, Y.; Xu, Y.; Zhang, G.; Lin, Q.; Luo, R. Projection of Changes in Flash Flood Occurrence under Climate Change at Tourist Attractions. J. Hydrol. 2021, 595, 126039. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Change Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Doan, T.M.; Tomppo, E.; McRoberts, R.E. Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification Methods—A Case Study from Dak Nong, Vietnam. Remote Sens. 2020, 12, 1367. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Assessing the Suitability of Data from Sentinel-1A and 2A for Crop Classification. GIScience Remote Sens. 2017, 54, 918–938. [Google Scholar] [CrossRef]
- Yang, H.; Pan, B.; Wu, W.; Tai, J. Field-Based Rice Classification in Wuhua County through Integration of Multi-Temporal Sentinel-1A and Landsat-8 OLI Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 226–236. [Google Scholar] [CrossRef]
- Whyte, A.; Ferentinos, K.P.; Petropoulos, G.P. A New Synergistic Approach for Monitoring Wetlands Using Sentinels -1 and 2 Data with Object-Based Machine Learning Algorithms. Environ. Model. Softw. 2018, 104, 40–54. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
Satellite Type | Sources | Classification Algorithm | Purpose |
---|---|---|---|
Landsat | [1] | Random Forest | Quantify the performance of 79 irrigation schemes across Sub-Saharan Africa for 2014–2018 |
[9] | Support Vector Machine | Quantify changes in irrigated areas between 1987 and 2015 in Burkina Faso | |
[12] | Maximum Likelihood | Monitor the expansion of Irrigated Areas for 1988, 2000, and 2009 in Kou Watershed | |
Landsat + MODIS | [13] | Single Decision Tree | Map irrigated agricultural area of Ghana for 2000–2001 |
[14] | Random Forest | Monitor agricultural expansion for the years 2001, 2007, and 2014 in Burkina Faso | |
MODIS | [15] | Single Decision Tree | Develop high-resolution irrigated area map of India for 2000 to 2015 |
[16] | Single Decision Tree | Map annual irrigated areas in Afghanistan from 2000 to 2013 | |
[17] | Unsupervised | Map irrigated area of Krishna River Basin, India for 2000–2001 | |
Landsat + Sentinel-2 | [18] | Random Forest | Comparison of six supervised classification approaches in the detection of irrigated areas in Southern Italy and found Random Forest as one of the best performers |
Support Vector Machine Boosted Decision Tree Single Decision Tree Artificial Neural Network k-Nearest Neighbor |
Class | Agriculture | Forest/Pastures | Non- Agriculture | Row Total | Consumer′s Accuracy |
---|---|---|---|---|---|
Agriculture | 228 | 9 | 1 | 238 | 0.96 |
Forest/Pastures | 53 | 125 | 22 | 200 | 0.63 |
Non-Agriculture | 9 | 5 | 104 | 118 | 0.88 |
Column Total | 290 | 139 | 127 | 556 | |
Producer′s Accuracy | 0.79 | 0.90 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, A.; Sawada, Y. Performance Assessment of Irrigation Projects in Nepal by Integrating Landsat Images and Local Data. Remote Sens. 2023, 15, 4633. https://doi.org/10.3390/rs15184633
Neupane A, Sawada Y. Performance Assessment of Irrigation Projects in Nepal by Integrating Landsat Images and Local Data. Remote Sensing. 2023; 15(18):4633. https://doi.org/10.3390/rs15184633
Chicago/Turabian StyleNeupane, Adarsha, and Yohei Sawada. 2023. "Performance Assessment of Irrigation Projects in Nepal by Integrating Landsat Images and Local Data" Remote Sensing 15, no. 18: 4633. https://doi.org/10.3390/rs15184633
APA StyleNeupane, A., & Sawada, Y. (2023). Performance Assessment of Irrigation Projects in Nepal by Integrating Landsat Images and Local Data. Remote Sensing, 15(18), 4633. https://doi.org/10.3390/rs15184633