The Effects of Precipitation Event Characteristics and Afforestation on the Greening in Arid Grasslands, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Interannual Variations of NDVI
3.2. Interannual Variations of Precipitation Regimes
3.3. Effects of Precipitation Regimes on Year-by-Year Changes of NDVI
3.4. Comparison between the Effects of Precipitation Regimes and Afforestation Projects on Year-by-Year Changes of NDVI
4. Discussion
4.1. NDVI Increased Significantly in Inner Mongolia Temperate Grasslands during 1982–2015
4.2. Increased Precipitation Amount Was Not Significantly Responsible for the Increased NDVI
4.3. The Effects of Precipitation Event Characteristics on Year-by-Year Changes of NDVI
4.4. The Role of Afforestation Projects in Greening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Edwards, R.; Treitz, P. Vegetation greening trends at two sites in the Canadian Arctic: 1984-2015. Arct. Antarct. Alp. Res. 2017, 49, 601–619. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Mazzanti, P.; Mugnozza, G.S.; Bozzano, F. Coherency and phase delay analyses between land cover and climate across Italy via the least-squares wavelet software. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103241. [Google Scholar] [CrossRef]
- Ju, J.C.; Masek, J.G. The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Miles, V.V.; Esau, I. Spatial heterogeneity of greening and browning between and within bioclimatic zones in northern West Siberia. Environ. Res. Lett. 2016, 11, 115002. [Google Scholar] [CrossRef]
- Yan, Y.; Xin, Z.; Bai, X.; Zhan, H.; Xi, J.; Xie, J.; Cheng, Y. Analysis of Growing Season Normalized Difference Vegetation Index Variation and Its Influencing Factors on the Mongolian Plateau Based on Google Earth Engine. Plants 2023, 12, 2550. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.; Jiao, C.; Xu, C.; Liu, Y.; Wu, G. Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Sci. Total Environ. 2021, 767, 144669. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, B.; Yang, X.; Qin, Z.; Wu, Q.; Zhao, F.; Chen, S.; Li, J.; Ma, H. MODIS-based vegetation growth of temperate grassland and its correlation with meteorological factors in northern China. Int. J. Remote Sens. 2015, 36, 1–14. [Google Scholar] [CrossRef]
- Di, K.; Hu, Z.; Wang, M.; Cao, R.; Liang, M.; Wu, G.; Chen, R.; Hao, G.; Zhao, Y. Recent greening of grasslands in northern China driven by increasing precipitation. J. Plant Ecol. 2021, 14, 843–853. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.; Li, S.; Li, X.; Sun, X.; Yu, G. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 2012, 18, 3624–3631. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.; Yang, L.; Zhou, T. Declining Effect of Precipitation on the Normalized Difference Vegetation Index of Grasslands in the Inner Mongolian Plateau, 1982–2010. Appl. Sci. 2021, 11, 8766. [Google Scholar] [CrossRef]
- Felton, A.J.; Shriver, R.K.; Bradford, J.B.; Suding, K.N.; Allred, B.W.; Adler, P.B. Biotic vs abiotic controls on temporal sensitivity of primary production to precipitation across North American drylands. New Phytol. 2021, 231, 2150–2161. [Google Scholar] [CrossRef] [PubMed]
- Estiarte, M.; Vicca, S.; Penuelas, J.; Bahn, M.; Beier, C.; Emmett, B.A.; Fay, P.A.; Hanson, P.J.; Hasibeder, R.; Kigel, J.; et al. Few multiyear precipitation-reduction experiments find ashift in the productivity-precipitation relationship. Glob. Chang. Biol. 2016, 22, 2570–2581. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.K.; Ciais, P.; Smith, M.D. Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change. New Phytol. 2017, 214, 41–47. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Lauenroth, W.K.; Burke, I.C.; Sala, O.E. Grassland Precipitation-Use Efficiency Varies Across a Resource Gradient. Ecosystems 1999, 2, 64–68. [Google Scholar] [CrossRef]
- Swemmer, A.M.; Knapp, A.K.; Snyman, H.A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 2007, 95, 780–788. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Wang, X.; Wang, Y. Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China. Land Use Policy 2020, 99, 105084. [Google Scholar] [CrossRef]
- Heisler-White, J.L.; Blair, J.M.; Kelly, E.F.; Harmoney, K.; Knapp, A.K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Chang. Biol. 2009, 15, 2894–2904. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.; Li, S.; Yu, G.; Sun, X.; Zhang, L.; Mu, S.; Zhu, X.; Wang, Y.; Li, Y.; et al. Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agric. For. Meteorol. 2015, 214, 169–177. [Google Scholar] [CrossRef]
- Heisler-White, J.L.; Knapp, A.K.; Kelly, E.F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 2008, 158, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.K.; Beier, C.; Briske, D.D.; Classen, A.T.; Luo, Y.; Reichstein, M.; Smith, M.D.; Smith, S.D.; Bell, J.E.; Fay, P.A.; et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Mao, X.; Yin, S.; Liu, H. Extreme climate changes and their impact on agricultural production in Shanxi, Shaanxi, and Henan Provinces in recent 61 years. J. Lanzhou Univ. 2023, 59, 71–79. [Google Scholar]
- Piao, S.; Zhang, X.; Chen, A.; Liu, Q.; Lian, X.; Wang, X.; Peng, S.; Wu, X. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci. China Earth Sci. 2019, 49, 1321–1334. [Google Scholar] [CrossRef]
- Yin, C.; Yang, F. Variation of Extreme Climate Events in “One Belt and One Road” Region and Its Impact on the Growing Season in Typical Agricultural Regions. Chin. J. Agrometeorol. 2021, 42, 463–474. [Google Scholar]
- Hua, W.; Chen, H.; Zhou, L.; Xie, Z.; Qin, M.; Li, X.; Ma, H.; Huang, Q.; Sun, S. Observational Quantification of Climatic and Human Influences on Vegetation Greening in China. Remote Sens. 2017, 9, 425. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Li, W.-Z.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Chen, X.N.; Tao, X.; Yang, Y.P. Distribution and Attribution of Gross Primary Productivity Increase Over the Mongolian Plateau, 2001-2018. IEEE Access 2022, 10, 25125–25134. [Google Scholar] [CrossRef]
- Niu, Q.; Xiao, X.; Zhang, Y.; Qin, Y.; Dang, X.; Wang, J.; Zou, Z.; Doughty, R.B.; Brandt, M.; Tong, X.; et al. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degrad. Dev. 2019, 30, 1620–1631. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Tan, M.; Li, X. Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy 2015, 43, 42–47. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, G.; Tang, Z.; Lu, D.; Wang, Z.; Chen, C. Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes. ISPRS J. Photogramm. Remote Sens. 2017, 133, 75–88. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar]
- Liu, X.; Xin, L. China’s deserts greening and response to climate variability and human activities. PLoS ONE 2021, 16, e0256462. [Google Scholar] [CrossRef]
- Hu, Z.; Fan, J.; Zhong, H.; Yu, G. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland. Sci. China Ser. D Earth Sci. 2007, 50, 754–764. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.; Krzyzanowski, J.; Li, Q.; et al. Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over the last three decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Pan, N.; Feng, X.; Fu, B.; Wang, S.; Ji, F.; Pan, S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Peng, S.S.; Chen, A.P.; Xu, L.; Cao, C.X.; Fang, J.Y.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S.L. Recent change of vegetation growth trend in China. Environ. Res. Lett. 2011, 6, 44027. [Google Scholar] [CrossRef]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, K.; Zhao, S.; Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid. Environ. 2011, 75, 946–952. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R.B.; Tucker, C.J.; Tan, K. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Wu, X.; Tsunekawa, A.; Wei, Y.; Liu, Y.; Peng, L.; Chen, J.; Bai, K. Increasing precipitation promoted vegetation growth in the Mongolian Plateau during 2001–2018. Front. Environ. Sci. 2023, 11, 1153601. [Google Scholar] [CrossRef]
- Knapp, A.K.; Smith, M.D. Variation among biomes in temporal dynamics of aboveground primary production. Science 2001, 91, 481–484. [Google Scholar] [CrossRef]
- Keenan, T.F.; Riley, W.J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 2018, 8, 825. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Chen, Y.; Mu, S.; Sun, Z.; Li, J. Grassland coverage inter-annual variation and its coupling relation with hydrothermal factors in China during 1982–2010. J. Geogr. Sci. 2014, 24, 593–611. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, L.; Wang, J.; Wang, Z.; Wang, X.; Bai, Y.; Chen, S. Wind erosion enhanced by land use changes significantly reduces ecosystem carbon storage and carbon sequestration potentials in semiarid grasslands. Land Degrad. Dev. 2018, 29, 3469–3478. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Fang, J.; Wang, X. Change in winter snow depth and its impacts on vegetation in China. Glob. Chang. Biol. 2010, 16, 3004–3013. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.; Zhang, T.; Liu, Q.; Piao, S. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Chang. Biol. 2018, 24, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wan, S.; Piao, S.; Hui, D.; Hovenden, M.J.; Ciais, P.; Liu, Y.; Liu, Y.; Zhong, M.; Zheng, M.; et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecol. Lett. 2019, 22, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, L.; Chen, X.; Shi, H. Effects of Precipitation Intensity and Temperature on NDVI-Based Grass Change over Northern China during the Period from 1982 to 2011. Remote Sens. 2015, 7, 10164–10183. [Google Scholar] [CrossRef]
- Shinoda, M.; Nandintsetseg, B. Soil moisture and vegetation memories in a cold, arid climate. Glob. Planet. Chang. 2011, 79, 110–117. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, B.; Ren, T.; Wang, S.; Chen, S. Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China. Chin. J. Plant Ecol. 2016, 40, 658–668. [Google Scholar]
- Lauenroth, W.K.; Sala, O.E. Long-term forage production of north-american shortgrass steppe. Ecol. Appl. 1992, 2, 397–403. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L. Sources and sinks of carbon from land-use change in China. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Wang, T. Atlas of Sandy Desert and Aeolian Desertification in Northern China; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
Precipitation Event Characteristics | 1982–2015 | 1982–1995 | 1996–2005 | 2006–2015 | |
---|---|---|---|---|---|
Precipitation intensity | Amount of <5 mm rainfall events (light) | + | - | + | - |
Amount of 5–10 mm rainfall events (moderate) | - | - | + | - | |
Amount of 10–20 mm rainfall events | + | - | + | - | |
Amount of 20–40 mm rainfall events | + | + | - | + | |
Amount of >40 mm rainfall events | + | + | - | + | |
Amount of >10 mm rainfall events (heavy) | + | + | - | + | |
Mean size of individual precipitation events | + | + | + | - | |
Mean size of light events | + | - | + | - | |
Mean size of moderate events | + | - | + | - | |
Mean size of heavy events | + | - | + | - | |
Precipitation frequency | Annual precipitation frequency | - | - | + | - |
Frequency of <5 mm events (light) | - | - | + | - | |
Frequency of 5–10 mm events (moderate) | - | - | + | - | |
Frequency of >10 mm events (heavy) | + | + | + | - | |
Frequency of extreme events | + | + | - | + | |
Precipitation interval | Averaged precipitation interval | + | - | + | - |
Frequency of extreme drought | + | + | + | - | |
Total days of extreme droughts | + | + | + | - |
Relationships between Precipitation Regimes and NDVI | Year-by-Year Changes of Precipitation Regimes | 1982–2015 | 1982–1995 (P1) | 1996–2005 (P2) | 2006–2015 (P3) | ||||
---|---|---|---|---|---|---|---|---|---|
Ratio (Number) | Correlation Coefficient | Ratio (Number) | Correlation Coefficient | Ratio (Number) | Correlation Coefficient | Ratio (Number) | Correlation Coefficient | ||
Positive | Increased GSP (decreased in P2) | 0.92 (1) | 0.66 | 8.05 (7) | 0.65 ± 0.1 | 5.36 (3) | 0.75 ± 0.09 | 6.8 (7) | 0.7 ± 0.09 |
Increased heavy events both in frequency and amount (decreased in P2) | 15.60 (17) | 0.37 ± 0.06 | 19.54 (17) | 0.59 ± 0.09 | 19.64 (11) | 0.7 ± 0.1 | 10.68 (11) | 0.71 ± 0.08 | |
Increased extreme events (decreased in P2) | 3.67 (4) | 0.44 ± 0.1 | 2.3 (2) | 0.74 ± 0.1 | 1.79 (1) | 0.72 | 1.94 (2) | 0.72 ± 0.16 | |
Total | 20.19 (22) | - | 29.89 (26) | - | 26.79 (15) | - | 19.42 (20) | - | |
Negative | Alleviated extreme drought and shortened precipitation intervals (increased in P2) | 3.67 (4) | −0.4 ± 0.06 | 3.45 (3) | −0.75 ± 0.08 | - | - | 17.48 (18) | −0.76 ± 0.1 |
Declined total event frequency (increased in P2) | 0.92 (1) | −0.51 | 5.75 (5) | −0.62 ± 0.1 | - | - | - | - | |
Declined light events (increased in P2) | 4.59 (5) | −0.4 ± 0.07 | 8.05 (7) | −0.64 ± 0.06 | 12.5 (7) | −0.71 ± 0.04 | 1.94 (2) | −0.71 ± 0.04 | |
Total | 9.17 (10) | - | 17.24 (15) | - | 12.5 (7) | - | 19.42 (20) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Guo, Q.; Hu, Z.; Li, S.; Min, Q.; Mu, S.; Xu, C.; Sun, L. The Effects of Precipitation Event Characteristics and Afforestation on the Greening in Arid Grasslands, China. Remote Sens. 2023, 15, 4621. https://doi.org/10.3390/rs15184621
Guo X, Guo Q, Hu Z, Li S, Min Q, Mu S, Xu C, Sun L. The Effects of Precipitation Event Characteristics and Afforestation on the Greening in Arid Grasslands, China. Remote Sensing. 2023; 15(18):4621. https://doi.org/10.3390/rs15184621
Chicago/Turabian StyleGuo, Xuan, Qun Guo, Zhongmin Hu, Shenggong Li, Qingwen Min, Songlin Mu, Chengdong Xu, and Linli Sun. 2023. "The Effects of Precipitation Event Characteristics and Afforestation on the Greening in Arid Grasslands, China" Remote Sensing 15, no. 18: 4621. https://doi.org/10.3390/rs15184621
APA StyleGuo, X., Guo, Q., Hu, Z., Li, S., Min, Q., Mu, S., Xu, C., & Sun, L. (2023). The Effects of Precipitation Event Characteristics and Afforestation on the Greening in Arid Grasslands, China. Remote Sensing, 15(18), 4621. https://doi.org/10.3390/rs15184621