Effects of Habitat Change on the Wintering Waterbird Community in China’s Largest Freshwater Lake
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Waterbird Survey
2.3. Abundance Trends
2.4. Habitat Condition
2.5. Effects of Habitat Change on Population Size
3. Results
3.1. Waterbird Diversity
3.2. Abundance Trends
3.3. Habitat Change between 1999 and 2019
3.4. Relationship between Change in Habitat Area and Change in Waterbird Abundances
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mclaughlin, D.L.; Cohen, A.J. Realizing ecosystem services: Wetland hydrologic function along a gradient of ecosystem condition. Ecol. Appl. 2013, 23, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Peng, S.S.; Ciais, P.; Chen, Y.H. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 2021, 11, 45–51. [Google Scholar] [CrossRef]
- Paulson Institute. Blueprint of Coastal Wetland Conservation and Management in China; Institute of Geographic Sciences and Natural Resources Research, CAS, Higher Education Press: Beijing, China, 2016. [Google Scholar]
- Moi, D.A.; Lansac-Tôha, F.M.; Romero, G.Q.; Souza, T.S.; Cardinale, B.J.; Kratina, P.; Perkins, D.M.; Teixeira, F.; Jeppesen, E.; Heino, J.; et al. Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands. Nat. Ecol. Evol. 2022, 6, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Xia, S.X.; Liu, Y.; Wang, Y.Y.; Chen, B.; Jia, Y.F. Wintering waterbirds in a large river floodplain: Hydrological connectivity is the key for reconciling development and conservation. Sci. Total Environ. 2016, 573, 645–660. [Google Scholar] [CrossRef]
- Xia, S.X.; Yu, X.B.; Lei, J.Y.; Richard, H.; Bena, S.; Lei, G.; Xie, P. Priority sites and conservation gaps of wintering waterbirds in the Yangtze River floodplain. J. Geogr. Sci. 2020, 30, 1617–1632. [Google Scholar] [CrossRef]
- SFA. Results of the second national wetland resources survey in China. Land Green. 2014, 2, 6–7. [Google Scholar]
- Wang, W.J.; Fraser, J.D.; Chen, J.K. Wintering waterbirds in the middle and lower Yangtze River floodplain: Changes in abundance and distribution. Bird Conserv. Int. 2017, 27, 167–186. [Google Scholar] [CrossRef]
- Han, X.X.; Chen, X.L.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sensor. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Xia, S.X.; Yu, X.B.; Fan, N. The wintering habitats of migrant birds and their relationship with water level in Poyang Lake, China. Wetlands 2010, 32, 2072–2078. [Google Scholar]
- Zou, Y.A.; Zhang, P.Y.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Yang, S.; Zhang, H.; Li, F.Y.; Xie, Y.H. Crucial sites and environmental variables for wintering migratory waterbird population distributions in the natural wetlands in East Dongting Lake, China. Sci. Total Environ. 2019, 655, 147–157. [Google Scholar] [CrossRef]
- Wang, W.J.; Fraser, J.D.; Chen, J.K. Distribution and Long-Term Population Trends of Wintering Waterbirds in Poyang Lake, China. Wetlands 2019, 39, S125–S135. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, L.; Barter, M.; Fox, A.D.; Zhao, M.; Meng, F.J.; Shi, H.Q.; Jiang, Y.; Zhu, W.Z. Changing distribution and abundance of Swan Goose Anser cygnoides in the Yangtze River floodplain: The likely loss of a very important wintering site. Bird Conserv. Int. 2011, 21, 36–48. [Google Scholar] [CrossRef]
- Li, F.; Wu, J.; Harris, J.; Burnham, J. Number and distribution of cranes wintering at Poyang Lake, China during 2011–2012. Chin. Bird. 2012, 3, 180–190. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhan, Y.H.; Liu, G.H.; Wu, J.D.; Zhan, H.Y.; Huang, Y.Z.; Huang, J.; Zhang, B.; Hu, B.H.; Li, Y. Investigation of number and distribution of the waterfowl of Poyang Lake in the winter of 2011. Jiangxi For. Sci. Technol. 2012, 3, 1–9. [Google Scholar]
- Ye, X.C.; Zhang, Q.; Liu, J.; Li, X.H.; Xu, C.Y. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Chen, M.F.; Fan, S.Y.; Deng, J.Y.; Wang, X.P. Impact of the Three Gorges Dam on Regulation and Storage Capacity of Poyang Lake. Landsc. Res. 2020, 6, 50–55. [Google Scholar]
- Zhang, Q.; Li, L.; Wang, Y.G.; Werner, A.D.; Xin, P.; Jiang, T.; Barry, D.A. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophys. Res. Lett. 2012, 39, 1–7. [Google Scholar] [CrossRef]
- Li, Y.K.; Zhong, Y.F.; Shao, R.Q.; Yan, C.; Jin, J.F.; Shan, J.H.; Li, F.S.; Ji, W.T.; Li, B.; Zhang, X.Y.; et al. Modified hydrological regime from the Three Gorges Dam increases the risk of food shortages for wintering waterbirds in Poyang Lake. Glob. Ecol. Conserv. 2020, 24, e01286. [Google Scholar] [CrossRef]
- Howes, J.; Melville, D.; Parish, D.; Wang, T.H. Practical Handbook for Waterfowl Field Research; World Wildlife Fund: Morges, Switzerland, 1988. [Google Scholar]
- Jia, M.M.; Liu, D.W.; Song, K.S.; Wang, Z.M.; Jiang, G.J.; Du, J.; Zeng, L.H. Classification and verification of land use/cover in Australia using MODIS time-series data. Remote Sens. Technol. Appl. 2010, 25, 380–386. [Google Scholar]
- You, H.L.; Fan, H.X.; Xu, L.G.; Wu, Y.M.; Wang, X.L.; Liu, L.Z.; Zhong, Y.; Yan, B.Y. Effects of water regime on spring wetland landscape evolution in Poyang Lake between 2000 and 2010. Water 2017, 9, 467. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.N.; Hupy, J.P.; Wang, Y.; Shao, G.F. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. Forest. Res. 2021, 32, 2719. [Google Scholar] [CrossRef]
- You, H.L.; Xu, L.G.; Liu, G.L.; Wang, X.L.; Wu, Y.M.; Jiang, J.H. Effects of inter-annual water level fluctuations on vegetation evolution in typical wetlands of Poyang Lake, China. Wetlands 2015, 35, 931–943. [Google Scholar] [CrossRef]
- Jung, M.; Rowhani, P.; Scharlemann, J.P.W. Impacts of past abrupt land change on local biodiversity globally. Nat. Commun. 2019, 10, 5474. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.H.; Nowakowski, A.J.; Frishkoff, L.O. Climate and land-use change severity alter trait-based responses to habitat conversion. Global. Ecol. Biogeogr. 2021, 30, 598–610. [Google Scholar] [CrossRef]
- Meng, Z.Q.; Dong, J.W.; Ellis, E.C.; Metternicht, G.; Qin, Y.W. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 2023, 6, 758–768. [Google Scholar] [CrossRef]
- Studds, C.E.; Kendall, B.E.; Murray, N.J.; Wilson, H.B.; Rogers, D.I.; Clemens, R.S.; Gosbell, K.; Hassell, C.J.; Jessop, R.; Melville, D.S. Rapid population decline in migratory shorebirds relying on yellow Sea tidal mudflats as stopover sites. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, F.; Shan, J.; Li, J.; Yuan, F.K.; Miao, L.J.; Xie, G.Y. The effect of climate change on the population fluctuation of the Siberian Crane in Poyang Lake. Acta Ecol. Sin. 2014, 34, 2645–2653. [Google Scholar]
- Shan, J.; Ma, J.; Li, Y.; Qian, F.; Tu, X. The dynamics and determinants of population size and spatial distribution of common cranes wintering in Poyang Lake. Acta Ecol. Sin. 2014, 34, 2050–2060. [Google Scholar]
- Pan, Y.W.; Ying, Z.X.; Li, H.H.; Liu, C.L.; Zhang, H.; Guan, B.C.; Liu, Y.Z.; He, L.; Ge, G. Landscape patterns and their changes of Poyang Lake wetlands under hydrological process and sand mining activities. Wetl. Sci. 2019, 17, 287–294. [Google Scholar]
- Zhang, Q.; Liu, Y.; Yang, G.S.; Zhang, Z.X. Precipitation and hydrological variations and related associations with large-scale circulation in the Poyang Lake basin, China. Hydrol. Process 2015, 25, 740–751. [Google Scholar] [CrossRef]
- Bahri, M.A. Comparison Study for Image Classification Using Supervised and Unsupervised Neuronal Networks. In Proceedings of the International conference on Control Engineering & Information Technology (CEIT-2013), Sousse, Tunisia, 4–7 June 2013. [Google Scholar]
- Zhao, C.X.; Qian, L.X. Comparative Study of Supervised and Unsupervised Classification in Remote Sensing Image. J. Henan Univ. Nat. Sci. 2014, 1–5. [Google Scholar] [CrossRef]
- BirdLife International. Important Bird and Biodiversity Areas. 2014. Available online: http://www.birdlife.org/worldwide/programme-additional-info/importantbird-and-biodiversity-areas. (accessed on 22 August 2019).
- IUCN 2023. The IUCN Red List of Threatened Species. Version 2022-2. Available online: https://www.iucnredlist.org (accessed on 22 August 2019).
% Change a | N b | F c | p d | Population Trends e | |
---|---|---|---|---|---|
Species | |||||
Greater White-fronted Goose | −50.5% | 18 | 1.682 | 0.213 | No significant trend |
Common Coot | −1.6% | 17 | 1.682 | 0.021 | Declining |
Siberian Crane | −53.0% | 16 | 0.712 | 0.413 | No significant trend |
Eurasian Spoonbill | 84.7% | 18 | 9.866 | 0.006 | Increasing |
Hooded Crane | −71.3% | 15 | 9.973 | 0.008 | Declining |
Eurasian Curlew | −33.3% | 8 | 0.89 | 0.382 | No significant trend |
White-naped Crane | −88.6% | 16 | 12.443 | 0.003 | Declining |
Spot-billed Duck | 14.0% | 17 | 0.712 | 0.412 | No significant trend |
Grey Heron | −66.5% | 18 | 10.370 | 0.005 | Declining |
Gadwall | −87.7% | 13 | 9.225 | 0.011 | Declining |
Eurasian Wigeon | 107.9% | 16 | 1.636 | 0.222 | No significant trend |
Ruddy Shelduck | 32.9% | 18 | 1.442 | 0.247 | No significant trend |
Eastern Great Egret | −79.0% | 12 | 0.291 | 0.601 | No significant trend |
Oriental White Stork | −60.6% | 18 | 0.76 | 0.396 | No significant trend |
Bean Goose | 1534.1% | 17 | 22.646 | 0.000 | Increasing |
Pied Avocet | 272.8% | 15 | 0.131 | 0.724 | No significant trend |
Northern Lapwing | −9.3% | 18 | 0.104 | 0.752 | No significant trend |
Great-crested Grebe | 746.8% | 13 | 7.108 | 0.022 | Increasing |
Tufted Duck | −42.9% | 12 | 0.01 | 0.922 | No significant trend |
Spotted Redshank | −86.6% | 14 | 4.886 | 0.047 | Declining |
Black-winged Stilt | −93.3% | 7 | 1.780 | 0.240 | No significant trend |
Dunlin | −12.3% | 13 | 0.385 | 0.548 | No significant trend |
Common Moorhen | 928.6% | 13 | 2.838 | 0.12 | No significant trend |
Black-tailed Godwit | −76.7% | 12 | 3.107 | 0.108 | No significant trend |
Common Redshank | −95.1% | 16 | 9.986 | 0.007 | Declining |
Common Pochard | 1267.9% | 11 | 4.139 | 0.072 | No significant trend |
Common Black-headed Gull | 42369.4% | 18 | 2.743 | 0.117 | No significant trend |
Swan Goose | 199.6% | 18 | 0.626 | 0.44 | No significant trend |
Baikal Teal | −73.9% | 12 | 0.046 | 0.835 | No significant trend |
Common Crane | 619.5% | 18 | 2.779 | 0.115 | No significant trend |
Grey-lag Goose | 150.6% | 17 | 9.854 | 0.007 | Increasing |
Falcated Duck | −89.6% | 15 | 0.0045 | 0.835 | No significant trend |
Common Teal | −75.5% | 17 | 0.511 | 0.486 | No significant trend |
Mallard | −82.8% | 17 | 1.614 | 0.223 | No significant trend |
Northern Shoveler | −95.3% | 12 | 2.169 | 0.172 | No significant trend |
Great Cormorant | −92.2% | 16 | 6.831 | 0.02 | Declining |
Common Greenshank | −87.7% | 16 | 1.102 | 0.312 | No significant trend |
Baer’ s Pochard | −74.5% | 11 | 1.211 | 0.300 | No significant trend |
Lesser White-fronted Goose | −64.0% | 16 | 0.01 | 0.921 | No significant trend |
Little Egret | 200.6% | 18 | 0.999 | 0.332 | No significant trend |
Little Grebe | −15.6% | 18 | 0.638 | 0.436 | No significant trend |
Tundra Swan | 9.3% | 18 | 0.322 | 0.578 | No significant trend |
Whiskered Tern | −91.8 | 6 | 1.022 | 0.369 | No significant trend |
Black-crowned Night Heron | −98.6 | 7 | 3.364 | 0.126 | No significant trend |
Herring Gull | −65.5 | 18 | 0.004 | 0.95 | No significant trend |
Northern Pintail | −81.6 | 17 | 0.116 | 0.738 | No significant trend |
Foraging groups | |||||
Herbivores | 2.7% | 18 | 2.1 | 0.167 | No significant trend |
Invertebrate eaters | −25.9% | 18 | 0.317 | 0.581 | No significant trend |
Fish eaters | −24.0% | 18 | 2.97 | 0.104 | No significant trend |
Omnivores | −1.6% | 18 | 0.862 | 0.367 | No significant trend |
Tuber feeders | 57.3% | 18 | 0.148 | 0.705 | No significant trend |
Water Bodies with a Depth of >60 cm | Water Bodies with a Depth of 30–60 cm | Water Bodies with a Depth of <30 cm | Mudflat | Sparse Vegetation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Common Coot | r | −0.618 | r | −0.740 | r | −0.643 | r | 0.691 | - | - |
p | 0.102 | p | 0.036 | p | 0.086 | p | 0.058 | - | - | |
Eurasian Spoonbill | - | - | r | −0.061 | r | 0.085 | r | −0.036 | - | - |
- | - | p | 0.887 | p | 0.842 | p | 0.932 | - | - | |
Hooded Crane | - | - | r | 0.073 | r | 0.218 | - | - | - | - |
- | - | p | 0.864 | p | 0.604 | - | - | - | - | |
White-naped Crane | - | - | r | −0.073 | r | −0.073 | - | - | - | - |
- | - | p | 0.864 | p | 0.864 | - | - | - | - | |
Grey Heron | - | - | r | −0.764 | r | −0.812 | r | 0.764 | - | - |
- | - | p | 0.027 | p | 0.014 | p | 0.027 | - | - | |
Gadwall | r | −0.837 | r | −0.473 | r | −0.667 | r | 0.909 | - | - |
p | 0.010 | p | 0.237 | p | 0.071 | p | 0.002 | - | - | |
Bean Goose | - | - | - | - | - | - | - | - | r | 0.255 |
- | - | - | - | - | - | - | - | p | 0.543 | |
Great-crested Grebe | r | 0.147 | r | 0.147 | r | 0.147 | r | 0.265 | - | - |
p | 0.781 | p | 0.781 | p | 0.781 | p | 0.612 | - | - | |
Spotted Redshank | - | - | - | - | r | −0.267 | r | 0.218 | - | - |
- | - | - | - | p | 0.523 | p | 0.604 | - | - | |
Common Redshank | - | - | - | - | r | −0.182 | r | 0.182 | - | - |
- | - | - | - | p | 0.666 | p | 0.666 | - | - | |
Grey-lag Goose | - | - | - | - | - | - | - | - | r | 0.194 |
- | - | - | - | - | - | - | - | p | 0.645 | |
Great Cormorant | r | −0.061 | r | 0.158 | r | 0.158 | r | 0.036 | - | - |
p | 0.887 | p | 0.709 | p | 0.709 | p | 0.932 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Pan, Y.; Yu, X.; Xia, S. Effects of Habitat Change on the Wintering Waterbird Community in China’s Largest Freshwater Lake. Remote Sens. 2023, 15, 4582. https://doi.org/10.3390/rs15184582
Duan H, Pan Y, Yu X, Xia S. Effects of Habitat Change on the Wintering Waterbird Community in China’s Largest Freshwater Lake. Remote Sensing. 2023; 15(18):4582. https://doi.org/10.3390/rs15184582
Chicago/Turabian StyleDuan, Houlang, Yiwen Pan, Xiubo Yu, and Shaoxia Xia. 2023. "Effects of Habitat Change on the Wintering Waterbird Community in China’s Largest Freshwater Lake" Remote Sensing 15, no. 18: 4582. https://doi.org/10.3390/rs15184582
APA StyleDuan, H., Pan, Y., Yu, X., & Xia, S. (2023). Effects of Habitat Change on the Wintering Waterbird Community in China’s Largest Freshwater Lake. Remote Sensing, 15(18), 4582. https://doi.org/10.3390/rs15184582