Updating of the Archival Large-Scale Soil Map Based on the Multitemporal Spectral Characteristics of the Bare Soil Surface Landsat Scenes
Abstract
:1. Introduction
- Apply a new method for obtaining the spectral characteristics of BSS based on a multitemporal soil line (MSL).
- Carry out the selection of multitemporal data of the BSS to build the MSL based on a neural network.
2. Materials and Methods
2.1. Study Site Description
2.2. Methods
2.2.1. A Group of Methods for Creating Vector Versions of Large-Scale Soil Maps
2.2.2. A Group of Methods for Obtaining Multitemporal Spectral Characteristics of BSS
Choice of Sources
- (1)
- Long-term period of data acquisition;
- (2)
- The unity in frequency of receiving frames (scenes);
- (3)
- Unity of spatial resolution;
- (4)
- Sufficiency of spatial resolution for solving the task;
- (5)
- Unity of spectral characteristics;
- (6)
- Unity of spectral correction methods.
Filtering of RSD Frames Unsuitable for BSS Calculations
Application of Machine Learning for Filtering RSD (Gradient Boosting and Neural Network)
Recognition of BSS
The Use of a Neural Network in the Recognition of BSS
Machine-Learning Quality Assessment
- (1)
- Test selection/sample. A set of objects not used in training;
- (2)
- Acceptance selection/sample. A set of objects not used in elaboration;
- (3)
Calculation of the Average Multitemporal Characteristics of the BSS
2.2.3. Retrospective Monitoring of Soil and Land Cover
2.2.4. Ground Verification Methods
Creation of a GIS Project
Creation of a Ground Survey Plan
Ground Data Collection
2.2.5. Cartographic Analysis
2.2.6. Atmospheric Correction
2.2.7. Estimating the Accuracy of Soil Maps
- (1)
- False-positive result—the contour of the soil map included soil cross-sections with the name of soils that do not match the name in this contour according to the map legend;
- (2)
- False negative result—cross-sections with soil names identical to the legend are outside the contour.
2.2.8. Flowchart of Research
3. Results
3.1. GIS Project (Used Materials)
- (1)
- Topographic maps at a scale of 1:25,000 and 1:50,000;
- (2)
- Panchromatic aerial photography of 2012 with a spatial resolution of 0.6 m (orthophotomap);
- (3)
- Digital elevation model (SRTM) 1 arcsecond [21];
- (4)
- Scanned analog space imagery of 1968 with a spatial resolution of 1.8 m (panchromatic, KH-4B satellite, US CORONA mission);
- (5)
- Scanned analog space imagery of 1975 with a spatial resolution of 6 m (panchromatic, KH-9 satellite, US CORONA mission);
- (6)
- RSD Landsat 4–8 from 1985 to 2022;
- (7)
- Space imagery Sentinel-2 2016–2022.
3.2. Ground Surveys
- (1)
- Chernozem-meadow, slitized, compacted, thick—high thickness of humus horizon, low-humus, clayey on hypergenized loess-like clays (chernozem-meadow slitized);
- (2)
- Meadow–chernozem, deeply slitized, compacted, thick, low-humus, clayey on hypergenized loess-like clays (meadow-chernozem deeply slitized);
- (3)
- Meadow-chernozem, thick, low-humus, clayey on loess-like clays (meadow-chernozem);
- (4)
- Ordinary chernozem, medium-thick, carbonate, low-humus, clayey on loess-like clays (ordinary chernozems);
- (5)
- Ordinary chernozem, medium-thick, slightly eroded, carbonate, slightly humus, clayey on loess-like clays (ordinary chernozem slightly eroded);
- (6)
- Ordinary chernozem, thin, moderately eroded, carbonate, slightly humus, clayey on loess-like clays (ordinary chernozem moderately eroded);
- (7)
- Ordinary chernozem, thin, strongly eroded, carbonate, slightly humus, clayey on loess-like clays (ordinary chernozem strongly eroded).
No. of Soil Pit | Soil Name Number under the Field Description (Table 2) | SOM Content (0–10 cm, %) | Thickness of Organic Horizons (A + AB, cm) | Soil Name Number According to the TSM (Table 3) | Coefficient “C” Values | Soil Name/Number on the SIC “C” Map (Table 2) |
---|---|---|---|---|---|---|
1 | 4 | 4.6 | 66 | 2 | 0.150316 | 4 |
2 | 1 | 4.7 | 93 | 1 | 0.140834 | 2 |
3 | 4 | 4.9 | 71 | 3 | 0.148305 | 4 |
4 | 6 | 3 | 40 | 3 | 0.162505 | 6 |
5 | 1 | 4.4 | 80 | 1 | 0.140222 | 2 |
6 | 4 | 4.5 | 75 | 2 | 0.152182 | 4 |
7 | 1 | 4.2 | 80 | 1 | 0.139464 | 1 |
8 | 3 | 4.8 | 85 | 2 | 0.147933 | 3 |
9 | 1 | 4.7 | 90 | 1 | 0.139807 | 1 |
10 | 5 | 3.2 | 50 | 3 | 0.156162 | 5 |
11 | 4 | 4.5 | 74 | 2 | 0.151732 | 4 |
12 | 4 | 4.7 | 81 | 2 | 0.151351 | 4 |
13 | 5 | 3.3 | 53 | 2 | 0.155832 | 5 |
14 | 2 | 4.2 | 99 | 2 | 0.140252 | 2 |
15 | 1 | 4.5 | 88 | 2 | 0.135304 | 1 |
16 | 3 | 4.6 | 83 | 2 | 0.146523 | 3 |
17 | 2 | 4.9 | 89 | 2 | 0.140269 | 2 |
18 | 3 | 5.3 | 90 | 2 | 0.144951 | 3 |
19 | 4 | 4.6 | 78 | 2 | 0.151866 | 4 |
20 | 3 | 5 | 96 | 2 | 0.144625 | 3 |
21 | 1 | 4.7 | 82 | 3 | 0.136906 | 1 |
22 | 4 | 4.9 | 75 | 3 | 0.146855 | 3 |
23 | 4 | 4.2 | 61 | 3 | 0.150051 | 4 |
24 | 5 | 4 | 57 | 3 | 0.149483 | 4 |
25 | 1 | 4.6 | 91 | 3 | 0.135332 | 1 |
26 | 4 | 5 | 75 | 3 | 0.148191 | 4 |
27 | 4 | 3.9 | 61 | 3 | 0.155674 | 5 |
28 | 3 | 4.1 | 87 | 3 | 0.141560 | 2 |
29 | 4 | 4.2 | 63 | 3 | 0.152116 | 4 |
30 | 2 | 4.3 | 77 | 1 | 0.141348 | 2 |
31 | 5 | 3.7 | 54 | 3 | 0.151744 | 4 |
32 | 5 | 3.7 | 57 | 3 | 0.154935 | 5 |
33 | 4 | 4.5 | 60 | 3 | 0.152203 | 4 |
34 | 2 | 4.2 | 87 | 3 | 0.138459 | 1 |
35 | 4 | 3.7 | 71 | 3 | 0.151331 | 4 |
36 | 4 | 4.8 | 61 | 3 | 0.151851 | 4 |
37 | 2 | 4.2 | 92 | 3 | 0.136519 | 1 |
38 | 4 | 3.9 | 64 | 3 | 0.150888 | 4 |
39 | 1 | 5.2 | 81 | 1 | 0.138736 | 1 |
40 | 5 | 4 | 55 | 3 | 0.152202 | 4 |
41 | 2 | 4.1 | 85 | 3 | 0.142406 | 2 |
42 | 5 | 3.8 | 56 | 3 | 0.154424 | 5 |
43 | 4 | 4.3 | 77 | 3 | 0.146385 | 3 |
44 | 5 | 4.3 | 59 | 3 | 0.150074 | 4 |
45 | 5 | 3.9 | 53 | 3 | 0.152083 | 4 |
46 | 6 | 3.6 | 49 | 3 | 0.154031 | 5 |
47 | 5 | 3.9 | 54 | 3 | 0.15323 | 5 |
48 | 4 | 4.5 | 65 | 3 | 0.150645 | 4 |
49 | 4 | 3.6 | 61 | 3 | 0.153833 | 5 |
50 | 4 | 3.9 | 66 | 3 | 0.153927 | 5 |
51 | 7 | 2.9 | 32 | 3 | 0.166287 | 7 |
52 | 6 | 3.2 | 45 | 3 | 0.160868 | 6 |
53 | 5 | 3.5 | 54 | 3 | 0.155222 | 5 |
54 | 5 | 3.6 | 52 | 4 | 0.154699 | 5 |
55 | 4 | 4.8 | 63 | 4 | 0.149733 | 4 |
56 | 5 | 3.6 | 53 | 4 | 0.153059 | 5 |
57 | 6 | 2.9 | 42 | 5 | 0.162181 | 6 |
58 | 4 | 4.7 | 79 | 5 | 0.147011 | 3 |
59 | 7 | 3.1 | 36 | 5 | 0.164403 | 7 |
60 | 7 | 2.9 | 29 | 5 | 0.171483 | 7 |
61 | 5 | 3.6 | 51 | 4 | 0.157736 | 5 |
62 | 6 | 3 | 43 | 4 | 0.162500 | 6 |
63 | 7 | 2.7 | 22 | 5 | 0.180938 | 7 |
64 | 7 | 2.6 | 22 | 5 | 0.180318 | 7 |
65 | 3 | 5.2 | 92 | 4 | 0.146179 | 3 |
66 | 5 | 3.6 | 51 | 4 | 0.154792 | 5 |
67 | 6 | 3.2 | 45 | 4 | 0.159494 | 6 |
68 | 7 | 2.7 | 30 | 5 | 0.178228 | 7 |
69 | 7 | 3 | 33 | 5 | 0.170166 | 7 |
70 | 6 | 3.1 | 43 | 4 | 0.156711 | 5 |
71 | 7 | 2.7 | 28 | 4 | 0.164193 | 7 |
72 | 6 | 3.1 | 40 | 4 | 0.161561 | 6 |
73 | 4 | 3.7 | 60 | 4 | 0.155570 | 5 |
74 | 6 | 3.1 | 42 | 4 | 0.157594 | 5 |
75 | 4 | 4.1 | 69 | 4 | 0.150709 | 4 |
76 | 5 | 3.5 | 55 | 4 | 0.154908 | 5 |
3.3. Scheme of Arable Land
3.4. Vector Version of a Traditional Soil Map (TSM)
3.5. Selection of Frames Suitable for Calculations of RSD and Detection of BSS
3.6. Map of Values of Coefficient “C” of Multitemporal Soil Line (MSL)
3.7. Intersection of the TSM and the “C” Coefficient Map
3.8. Map of Soil Interpretation of Coefficient “C” (SIC “C”)
- (8)
- Map of soil profiles;
- (9)
- Scheme of arable land;
- (10)
- Raster georeferenced TSM;
- (11)
- Vector georeferenced TSM;
- (12)
- Map of coefficient “C”.
3.9. Analysis
3.9.1. Correction of the TSM Based on the Results of Intersection of the TSM and the Map of “C” Coefficient Values
3.9.2. Comparison of the TSM and the Soil Interpretation Map of the “C” Coefficient
3.9.3. Estimation of the TSM Accuracy Based on the Results of Ground Surveys
- (1)
- Soils of the meadow series.
- (2)
- Non-degraded chernozems.
- (3)
- Non-degraded chernozems in combination with degraded chernozems.
- (4)
- Deflated chernozems.
- (5)
- Degraded chernozems.
3.9.4. Assessment of the SIC “C” Map Accuracy Based on the Results of Ground Surveys
- (1)
- Class 1 (Table 2)—chernozem-meadow soils. The first kind of error (type I error) is 25%, and the second (type II error)—14%. Errors summed up only because of the mutual intersection of Class 1 and Class 2—meadow-chernozem soil. The soils are spectrally and morphologically similar. The main difference is the degree of soil moisture. Both soils are slitized and overcompacted.
- (2)
- Class 2 (Table 2)—meadow-chernozem soils. Error of I and II types are the same—33%. Errors are totalized due to the joint intersection of Class 2 with Classes 1 and 3—meadow-chernozem soil. The soils are spectrally and morphologically similar. The main difference is the degree of moisture and the degree of compaction, as well as the slitization factor. If the intersection of Classes 1 and 2 can be considered to be a minor error, Class 3 refers to non-degraded chernozems with a higher degree of moisture supply, i.e., Classes 1 and 2 refer to soils with low agricultural productivity, and Class 3 to high ones.
- (3)
- Class 3 (Table 2)—meadow-like chernozem soils. Type I error is 33% and type II error is 14%. Errors are added up due to the mutual intersection of Class 3 with Class 2—meadow–chernozem soil.
- (4)
- Class 4 (Table 2)—ordinary chernozems, not degraded. Type I error is 24% and type II error is 27%. Most of the errors (9 out of 11) are added up due to the mutual intersection of Class 4 and Class 5—ordinary chernozem slightly eroded. The soils are spectrally and morphologically similar. The main difference is the thickness of the humus horizon and the OM content in the arable layer. The identification of these soils, even in the field, is not always possible.
- (5)
- Class 5 (Table 2)—ordinary chernozem slightly eroded. Type I error is 39% and type II error is 31%. Errors are added up due to the mutual intersection of Class 5 with classes—4 and 6—ordinary chernozem moderately eroded. The distinguishing of chernozem according to the degree of erosion is possible only according to the humus horizon thickness and the OM content in the plow horizon. In space, this is a very smooth transition, which is difficult to detect spectrally.
- (6)
- Class 6 (Table 2)—ordinary chernozem moderately eroded. Type I error is 0% and type II error is 33%. Errors are formed due to the mutual intersection of Class 6 with Class 5—ordinary chernozem slightly eroded.
- (7)
- Class 7 (Table 2)—ordinary chernozem strongly eroded. Type I and II errors are the same—0%. The spectral brightness of strongly eroded soils increases sharply because humus horizons are almost completely lost. Low-humus carbonate horizons with high reflectivity come to the surface.
3.9.5. Comparison in the Accuracy of the TSM and the SIC “C” Map When Both Maps Are Aggregated into Three Classes
- (1)
- (2)
- (3)
3.9.6. Characteristics of the TSM by Organic Matter (OM)
3.9.7. Characteristics of the SIC “C” Map in Terms of OM
3.9.8. Possibility of Interpretation of Soil Maps as Maps of OM Stocks
4. Discussion
4.1. Physical Interpretation of Investigations
- Chernozem-meadow, slitized, compacted, thick, low-humus, clayey on hypergenized loess-like clays (chernozem-meadow slitized);
- Meadow-chernozem, deeply slitized, compacted, thick, low-humus, clayey on hypergenized loess-like clays (meadow-chernozem deeply slitized);
- Meadow-chernozem, thick, low-humus, clayey on loess-like clays (meadow-chernozem);
- Ordinary chernozem, medium-thick, carbonate, low-humus, clayey on loess-like clays (ordinary chernozems);
- Ordinary chernozem, medium-thick, slightly eroded, carbonate, slightly humus, clayey on loess-like clays (ordinary chernozem slightly eroded);
- Ordinary chernozem, thin, moderately eroded, carbonate, slightly humus, clayey on loess-like clays (ordinary chernozem moderately eroded);
- Ordinary chernozem, thin, strongly eroded, carbonate, slightly humus, clayey on loess-like clays (ordinary chernozem strongly eroded).
4.2. Description of Soil Maps
4.3. Review of Similar Studies
- (1)
- The process of isolating BSS on RSD.
- (2)
- Application of VIs.
- (3)
- Informativeness of soil data.
- (4)
- Multitemporal series.
- (5)
- Correction of soil maps.
4.4. Direction for Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fridland, V.M. Structure of the soil mantle. Geoderma 1974, 12, 35–41. [Google Scholar] [CrossRef]
- Fridland, V.M. Pattern of the Soil Cover; John Wiley & Sons: Hoboken, NJ, USA, 1977; ISBN 9780470991671. [Google Scholar]
- Kiryushin, V.I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 2019, 52, 1137–1145. [Google Scholar] [CrossRef]
- Ischenko, T.A. (Ed.) All-Union Instruction on Soil Surveys and the Compilation of Large-Scale Soil Land Use Maps; Kolos: Moscow, Russia, 1973. (In Russian) [Google Scholar]
- Web Soil Survey. Available online: https://websoilsurvey.nrcs.usda.gov/app/ (accessed on 1 June 2023).
- Jędrejek, A.; Jadczyszyn, J.; Pudełko, R. Increasing accuracy of the soil-agricultural map by Sentinel-2 images analysis—Case study of maize cultivation under drought conditions. Remote Sens. 2023, 15, 1281. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Vilchevskaya, E.V.; Suleiman, G.A.; Chernousenko, G.I. Detecting degraded arable land on the basis of remote sensing big data analysis. Eurasian Soil Sci. 2021, 54, 161–175. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, J.; Chen, S.; Wang, N.; Shi, Z.; Huang, Y.; Zhuo, Z. Digital mapping of soil organic carbon with machine learning in dryland of Northeast and North plain China. Remote Sens. 2022, 14, 2504. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Emadi, M.; Cherati, A.; Heung, B.; Mosavi, A.; Scholten, T. Bio-inspired hybridization of artificial neural networks: An application for mapping the spatial distribution of soil texture fractions. Remote Sens. 2021, 13, 1025. [Google Scholar] [CrossRef]
- Nekrasov, R.V. On the guard of Russian soils fertility. Agrochem. Her. 2019, 52, 1137–1145. (In Russian) [Google Scholar] [CrossRef]
- Kulyanitsa, A.L.; Rukhovich, D.I.; Koroleva, P.V.; Vilchevskaya, E.V.; Kalinina, N.V. Analysis of the informativity of big satellite precision-farming data processing for correcting large-scale soil maps. Eurasian Soil Sci. 2020, 53, 1709–1725. [Google Scholar] [CrossRef]
- Farifteh, J.; Van Der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef]
- Ibrahim, Y.Z.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in sub-Saharan west Africa from 1982 to 2012. Remote Sens. 2015, 7, 5471–5494. [Google Scholar] [CrossRef]
- Mendonça-Santos, M.D.L.; Dart, R.O.; Santos, H.G.; Coelho, M.R.; Berbara, R.L.L.; Lumbreras, J.F. Digital soil mapping of topsoil organic carbon content of Rio de Janeiro state, Brazil. In Digital Soil Mapping; Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E., Kienast-Brown, S., Eds.; Springer: New York, NY, USA, 2010; pp. 255–266. [Google Scholar] [CrossRef]
- Glazunov, G.P.; Gendugov, V.M. A full-scale model of wind erosion and its verification. Eurasian Soil Sci. 2003, 36, 216–226. [Google Scholar]
- Larionov, G.A.; Dobrovol’skaya, N.G.; Krasnov, S.F.; Liu, B.Y. The new equation for the relief factor in statistical models of water erosion. Eurasian Soil Sci. 2003, 36, 1105–1113. [Google Scholar]
- Maltsev, K.A.; Yermolaev, O.P. Potential soil loss from erosion on arable lands in the European part of Russia. Eurasian Soil Sci. 2019, 52, 1588–1597. [Google Scholar] [CrossRef]
- Sukhanovskii, Y.P. Rainfall erosion model. Eurasian Soil Sci. 2010, 43, 1036–1046. [Google Scholar] [CrossRef]
- Shary, P.A.; Sharaya, L.S.; Mitusov, A.V. Fundamental quantitative methods of land surface analysis. Geoderma 2002, 107, 1–32. [Google Scholar] [CrossRef]
- SRTM. Available online: http://srtm.csi.cgiar.org (accessed on 1 June 2023).
- Romanenkov, V.A.; Smith, J.U.; Smith, P.; Sirotenko, O.D.; Rukhovitch, D.I.; Romanenko, I.A. Soil organic carbon dynamics of croplands in European Russia: Estimates from the “model of humus balance”. Reg. Environ. Change 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Vilchevskaya, E.V.; Romanenkov, V.A.; Kolesnikova, L.G. Constructing a spatially-resolved database for modelling soil organic carbon stocks of croplands in European Russia. Reg. Environ. Change 2007, 7, 51–61. [Google Scholar] [CrossRef]
- Khitrov, N.B.; Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Trubnikov, A.V.; Petukhov, D.A.; Kulyanitsa, A.L. A study of the responsiveness of crops to fertilizers by zones of stable intra-field heterogeneity based on big satellite data analysis. Arch. Agron. Soil Sci. 2020, 66, 1963–1975. [Google Scholar] [CrossRef]
- Zhang, Y.; Walker, J.P.; Pauwels, V.R.N.; Sadeh, Y. Assimilation of wheat and soil states into the APSIM-wheat crop model: A case study. Remote Sens. 2022, 14, 65. [Google Scholar] [CrossRef]
- Qi, G.; Chang, C.; Yang, W.; Gao, P.; Zhao, G. Soil salinity inversion in coastal corn planting areas by the satellite-UAV-ground integration approach. Remote Sens. 2021, 13, 3100. [Google Scholar] [CrossRef]
- Romano, E.; Bergonzoli, S.; Pecorella, I.; Bisaglia, C.; De Vita, P. Methodology for the definition of durum wheat yield homogeneous zones by using satellite spectral indices. Remote Sens. 2021, 13, 2036. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Ye, R.; Kobayashi, S.; Yagura, K.; Hor, S.; Soben, K.; Homma, K. Quantification of changes in rice production for 2003–2019 with MODIS LAI data in Pursat province, Cambodia. Remote Sens. 2021, 13, 1971. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, D.D.; Kalinina, N.V. The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution. Remote Sens. 2021, 13, 155. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Y.; Huang, H.; Li, A.; Yang, L.; Zhou, C. A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables. Remote Sens. 2022, 14, 4441. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V. The informativeness of coefficients a and b of the soil line for the analysis of remote sensing materials. Eurasian Soil Sci. 2016, 49, 831–845. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V. Maps of averaged spectral deviations from soil lines and their comparison with traditional soil maps. Eurasian Soil Sci. 2016, 49, 739–756. [Google Scholar] [CrossRef]
- Kulyanitsa, A.L.; Rukhovich, A.D.; Rukhovich, D.D.; Koroleva, P.V.; Rukhovich, D.I.; Simakova, M.S. The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials. Eurasian Soil Sci. 2017, 50, 387–396. [Google Scholar] [CrossRef]
- Koroleva, P.V.; Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Kulyanitsa, A.L.; Trubnikov, A.V.; Kalinina, N.V.; Simakova, M.S. Location of bare soil surface and soil line on the RED–NIR spectral plane. Eurasian Soil Sci. 2017, 50, 1375–1385. [Google Scholar] [CrossRef]
- Koroleva, P.V.; Rukhovich, D.I.; Rukhovich, A.D.; Rukhovich, D.D.; Kulyanitsa, A.L.; Trubnikov, A.V.; Kalinina, N.V.; Simakova, M.S. Characterization of soil types and subtypes in N-dimensional space of multitemporal (empirical) soil line. Eurasian Soil Sci. 2018, 51, 1021–1033. [Google Scholar] [CrossRef]
- Karyotis, K.; Tsakiridis, N.L.; Tziolas, N.; Samarinas, N.; Kalopesa, E.; Chatzimisios, P.; Zalidis, G. On-site soil monitoring using photonics-based sensors and historical soil spectral libraries. Remote Sens. 2023, 15, 1624. [Google Scholar] [CrossRef]
- Broeg, T.; Blaschek, M.; Seitz, S.; Taghizadeh-Mehrjardi, R.; Zepp, S.; Scholten, T. Transferability of covariates to predict soil organic carbon in cropland soils. Remote Sens. 2023, 15, 876. [Google Scholar] [CrossRef]
- Yang, M.; Chen, S.; Guo, X.; Shi, Z.; Zhao, X. Exploring the potential of vis-NIR spectroscopy as a covariate in soil organic matter mapping. Remote Sens. 2023, 15, 1617. [Google Scholar] [CrossRef]
- Xu, H.; Hu, X.; Guan, H.; Zhang, B.; Wang, M.; Chen, S.; Chen, M. A remote sensing based method to detect soil erosion in forests. Remote Sens. 2019, 11, 513. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. Mapping soil erosion in a quaternary catchment in Eastern Cape using geographic information system and remote sensing. S. Afr. J. Geomat. 2017, 6, 11. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Ayalew, D.A.; Deumlich, D.; Šarapatka, B.; Doktor, D. Quantifying the sensitivity of NDVI-based C factor estimation and potential soil erosion prediction using Spaceborne earth observation data. Remote Sens. 2020, 12, 1136. [Google Scholar] [CrossRef]
- De Carvalho, D.F.; Durigon, V.L.; Antunes, M.A.H.; De Almeida, W.S.; Oliveira, P.T.S. Predicting soil erosion using RUSLE and NDVI time series from TM Landsat 5. Pesqui. Agropecuária Bras. 2014, 49, 215–224. [Google Scholar] [CrossRef]
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J. Limits to the use of NDVI in land degradation assessment. In Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales; Springer Briefs in Environmental Science; Springer: Cham, Switzerland, 2015; pp. 27–30. [Google Scholar] [CrossRef]
- Gallo, B.C.; Magalhães, P.S.G.; Demattê, J.A.M.; Cervi, W.R.; Carvalho, J.L.N.; Barbosa, L.C.; Bellinaso, H.; Mello, D.C.d.; Veloso, G.V.; Alves, M.R.; et al. Soil erosion satellite-based estimation in cropland for soil conservation. Remote Sens. 2023, 15, 20. [Google Scholar] [CrossRef]
- van der Werff, H.; Ettema, J.; Sampatirao, A.; Hewson, R. How weather affects over time the repeatability of spectral indices used for geological remote sensing. Remote Sens. 2022, 14, 6303. [Google Scholar] [CrossRef]
- Ulfa, F.; Orton, T.G.; Dang, Y.P.; Menzies, N.W. Are climate-dependent impacts of soil constraints on crop growth evident in remote-sensing data? Remote Sens. 2022, 14, 5401. [Google Scholar] [CrossRef]
- Huang, H.; Huang, J.; Feng, Q.; Liu, J.; Li, X.; Wang, X.; Niu, Q. Developing a dual-stream deep-learning neural network model for improving county-level winter wheat yield estimates in China. Remote Sens. 2022, 14, 5280. [Google Scholar] [CrossRef]
- Lopez-Fornieles, E.; Brunel, G.; Devaux, N.; Roger, J.-M.; Taylor, J.; Tisseyre, B. Application of parallel factor analysis (PARAFAC) to the regional characterisation of vineyard blocks using remote sensing time series. Agronomy 2022, 12, 2544. [Google Scholar] [CrossRef]
- Hao, B.; Xu, X.; Wu, F.; Tan, L. Long-term effects of fire severity and climatic factors on post-forest-fire vegetation recovery. Forests 2022, 13, 883. [Google Scholar] [CrossRef]
- Stendardi, L.; Karlsen, S.R.; Malnes, E.; Nilsen, L.; Tømmervik, H.; Cooper, E.J.; Notarnicola, C. Multi-sensor analysis of snow seasonality and a preliminary assessment of SAR backscatter sensitivity to arctic vegetation: Limits and capabilities. Remote Sens. 2022, 14, 1866. [Google Scholar] [CrossRef]
- Hernández-Romero, G.; Álvarez-Martínez, J.M.; Pérez-Silos, I.; Silió-Calzada, A.; Vieites, D.R.; Barquín, J. From forest dynamics to wetland siltation in mountainous landscapes: A RS-based framework for enhancing erosion control. Remote Sens. 2022, 14, 1864. [Google Scholar] [CrossRef]
- A’Campo, W.; Bartsch, A.; Roth, A.; Wendleder, A.; Martin, V.S.; Durstewitz, L.; Lodi, R.; Wagner, J.; Hugelius, G. Arctic tundra land cover classification on the beaufort coast using the Kennaugh element framework on dual-polarimetric TerraSAR-X imagery. Remote Sens. 2021, 13, 4780. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.; He, Q.; Ma, G. Spatio-temporal analysis of ecological vulnerability and driving factor analysis in the Dongjiang river basin, China, in the recent 20 years. Remote Sens. 2021, 13, 4636. [Google Scholar] [CrossRef]
- Cui, T.; Gong, Z.; Zhao, W.; Zhao, Y.; Lin, C. Research on estimating wetland vegetation abundance based on spectral mixture analysis with different endmember model: A case study in Wild Duck Lake wetland, Beijing. Acta Ecol. Sin. 2013, 33, 1160–1171. (In Chinese) [Google Scholar] [CrossRef]
- Lozbenev, N.; Komissarov, M.; Zhidkin, A.; Gusarov, A.; Fomicheva, D. Comparative assessment of digital and conventional soil mapping: A case study of the Southern Cis-Ural region, Russia. Soil Syst. 2022, 6, 14. [Google Scholar] [CrossRef]
- Farm Management. Satellite Big Data: How It Is Changing the Face of Precision Farming. Available online: http://www.farmmanagement.pro/satellite-big-data-how-it-is-changing-the-face-of-precision-farming/ (accessed on 1 June 2023).
- Koroleva, P.V.; Rukhovich, D.I.; Shapovalov, D.A.; Suleiman, G.A.; Dolinina, E.A. Retrospective monitoring of soil waterlogging on arable land of Tambov oblast in 2018–1968. Eurasian Soil Sci. 2019, 52, 834–852. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Chernousenko, G.I.; Vil’Chevskaya, E.V.; Dolinina, E.A. The influence of soil salinization on land use changes in Azov district of Rostov oblast. Eurasian Soil Sci. 2017, 50, 276–295. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Chernousenko, G.I.; Vil’Chevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Methodology for comparing soil maps of different dates with the aim to reveal and describe changes in the soil cover (by the example of soil salinization monitoring). Eurasian Soil Sci. 2016, 49, 145–162. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Vil’Chveskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Retrospective analysis of changes in land uses on vertic soils of closed mesodepressions on the Azov plain. Eurasian Soil Sci. 2015, 48, 1050–1075. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Simakova, M.S.; Kulyanitsa, A.L.; Bryzzhev, A.V.; Koroleva, P.V.; Kalinina, N.V.; Vil’Chevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Impact of shelterbelts on the fragmentation of erosional networks and local soil waterlogging. Eurasian Soil Sci. 2014, 47, 1086–1099. [Google Scholar] [CrossRef]
- Zi, Y.; Xie, F.; Jiang, Z. A Cloud detection method for Landsat 8 images based on PCANet. Remote Sens. 2018, 10, 877. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, J.; Deng, X.; An, W.; Li, J. Cloud detection of remote sensing images on Landsat-8 by deep learning. In Proceedings of the Tenth International Conference on Digital Image Processing (ICDIP 2018), Shanghai, China, 9 August 2018; p. 108064Y. [Google Scholar] [CrossRef]
- Mateo-Garcia, G.; Gómez-Chova, L. Convolutional neural networks for cloud screening: Transfer learning from Landsat-8 to Proba-V. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2103–2106. [Google Scholar] [CrossRef]
- Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [Google Scholar] [CrossRef]
- Openshaw, S. Geographical Data Mining: Key Design Issues. In Proceedings of the 4th International Conference on GeoComputation, Fredericksburg, VA, USA, 25–28 July 1999; Available online: http://www.geocomputation.org/1999/051/gc_051.htm (accessed on 1 June 2023).
- Hastie, T.J.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2008; p. 763. [Google Scholar]
- ExactFarming. Available online: https://www.exactfarming.com/ru/ (accessed on 1 June 2023).
- Farmers Edge. Available online: https://www.farmersedge.ca/ru/ (accessed on 1 June 2023).
- Cropio. Available online: https://about.cropio.com/ru/ (accessed on 1 June 2023).
- Intterra. Available online: https://intterra.ru/ru (accessed on 1 June 2023).
- AGRO-SAT Consulting GmbH. Available online: http://agro-sat.de/ (accessed on 1 June 2023).
- NEXT Farming: Smarte Lösungen für Landwirte. Available online: https://www.nextfarming.de/ (accessed on 1 June 2023).
- Agronote. Available online: https://www.avgust.com/newspaper/topics/detail.php?ID=6860 (accessed on 1 June 2023).
- OneSoil. Available online: https://onesoil.ai/en (accessed on 1 June 2023).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.; Walter, A.; Siegwart, R. WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sens. 2018, 10, 1423. [Google Scholar] [CrossRef]
- Lottes, P.; Behley, J.; Milioto, A.; Stachniss, C. Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robot. Autom. Lett. 2018, 3, 2870–2877. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A nested U-Net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T., Martel, A., Tavares, J.M.R.S., Bradley, A., Papa, J.P., Belagiannis, V., Nascimento, J.C., et al., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11045, pp. 3–11. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Q.; Cao, F.; Chen, J.; Lu, G. High-resolution remote sensing image segmentation framework based on attention mechanism and adaptive weighting. ISPRS Int. J. Geo-Inf. 2021, 10, 241. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, H.; Wang, P.; Ling, X. ATT squeeze U-Net: A lightweight network for forest fire detection and recognition. IEEE Access 2021, 9, 10858–10870. [Google Scholar] [CrossRef]
- Porzi, L.; Bulò, S.R.; Colovic, A.; Kontschieder, P. Seamless scene segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: New York, NY, USA, 2019; pp. 8269–8278. [Google Scholar]
- Bajocco, S.; Ginaldi, F.; Savian, F.; Morelli, D.; Scaglione, M.; Fanchini, D.; Raparelli, E.; Bregaglio, S.U.M. On the use of NDVI to estimate LAI in field crops: Implementing a conversion equation library. Remote Sens. 2022, 14, 3554. [Google Scholar] [CrossRef]
- Dubbini, M.; Palumbo, N.; De Giglio, M.; Zucca, F.; Barbarella, M.; Tornato, A. Sentinel-2 data and unmanned aerial system products to support crop and bare soil monitoring: Methodology based on a statistical comparison between remote sensing data with identical spectral bands. Remote Sens. 2022, 14, 1028. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The tasseled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976; Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1976; pp. 4B-41–4B-51. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Landsat Enhanced Vegetation Index. Available online: https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index (accessed on 1 June 2023).
- Lee, K.-S.; Cohen, W.B.; Kennedy, R.E.; Maiersperger, T.K.; Gower, S.T. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens. Environ. 2004, 91, 508–520. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.K.; Abkar, A.A. Leaf area index derivation from hyperspectral vegetation indices and the red edge position. Int. J. Remote Sens. 2009, 30, 6199–6218. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, A.D.; Komissarov, M.A. Informativeness of the long-term average spectral characteristics of the bare soil surface for the detection of soil cover degradation with the neural network filtering of remote sensing data. Remote Sens. 2023, 15, 124. [Google Scholar] [CrossRef]
- Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, D.D.; Rukhovich, A.D. Recognition of the bare soil using deep machine learning methods to create maps of arable soil degradation based on the analysis of multi-temporal remote sensing data. Remote Sens. 2022, 14, 2224. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1–km resolution. Sci. Data 2018, 5, 180–214. [Google Scholar] [CrossRef]
- Khitrov, N.B.; Kalinina, N.V.; Rogovneva, L.V.; Rukhovich, D.I. Vertisols and Vertic Soils of Russia; Print House of Zhukovsky Akademy: Moscow, Russia, 2020; 516p. [Google Scholar]
- Khitrov, N.B.; Vlasenko, V.P.; Rukhovich, D.I.; Kalinina, N.V.; Rogovneva, L.V. The geography of vertisols and vertic soils in the Kuban-Azov lowland. Eurasian Soil Sci. 2015, 48, 671–688. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Nazarenko, O.G.; Ilyinskaya, I.N. Land degradation dynamics in Rostov oblast. Arid Ecosyst. 2020, 10, 93–97. [Google Scholar] [CrossRef]
- Golosov, V.N.; Collins, A.L.; Dobrovolskaya, N.G.; Bazhenova, O.I.; Ryzhov, Y.V.; Sidorchuk, A.Y. Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture. Geoderma 2021, 381, 114678. [Google Scholar] [CrossRef]
- The Federal Service for State Registration, Cadastre and Cartography (Rosreestr). Available online: https://rosreestr.gov.ru (accessed on 1 June 2023).
- EasyTrace. Available online: https://easytrace.com/ (accessed on 1 June 2023).
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. Catboost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6638–6648. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- McCarty, J.L.; Ellicott, E.A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P. Multi-year black carbon emissions from cropland burning in the Russian Federation. Atmos. Environ. 2012, 63, 223–238. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; Scientific and Technical Information Office, NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167v3. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Santiago, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. Available online: https://arxiv.org/abs/1412.6980 (accessed on 1 June 2023).
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2 (IJCAI’95), Montreal, QC, Canada, 20–25 August 1995; pp. 1137–1143. [Google Scholar]
- Mullin, M.; Sukthankar, R. Complete cross-validation for nearest neighbor classifiers. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML ’00), Stanford, CA, USA, 29 June–2 July 2000; pp. 639–646. [Google Scholar]
- Rukhovich, D.I. Method for Creating Soil Maps Based on the Results of the Analysis of Remote Sensing Data. Patent RU 2777272 C1, IPC G01V 9/00, 1 August 2022. [Google Scholar]
- Unified Interdepartmental Information and Statistical System. State Statistics. Available online: https://fedstat.ru/indicator/31328 (accessed on 1 June 2023).
- Rukhovich, D.I.; Koroleva, P.V.; Vilchevskaya, E.V.; Kalinina, N.V. Digital thematic cartography as a change in the available primary sources and ways of using them. In Digital Soil Mapping: Theoretical and Experimental Studies; Ivanov, A.L., Sorokina, N.P., Savin, I.Y., Eds.; Dokuchaev Soil Science Institute: Moscow, Russia, 2012; pp. 58–86. [Google Scholar]
- EarthExplorer. Available online: http://earthexplorer.usgs.gov (accessed on 1 June 2023).
- USGS EROS Archive-Declassified Data-Declassified Satellite Imagery-1. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 1 June 2023).
- Bryzzhev, A.V.; Rukhovich, D.I.; Koroleva, P.V.; Kalinina, N.V.; Vilchevskaya, E.V.; Dolinina, E.A.; Rukhovich, S.V. Organization of retrospective monitoring of the soil cover of Rostov Oblast. Eurasian Soil Sci. 2015, 48, 1029–1049. [Google Scholar] [CrossRef]
- Shapovalov, D.A.; Koroleva, P.V.; Kalinina, N.V.; Rukhovich, D.I.; Suleiman, G.A.; Dolinina, E.A. Differences in inventories of waterlogged territories in soil surveys of different years and in land management documents. Eurasian Soil Sci. 2020, 53, 294–309. [Google Scholar] [CrossRef]
- Unified State Register of Soil Resources of Russia. Available online: http://egrpr.soil.msu.ru/index.php (accessed on 1 June 2023).
- Soil Map of the North Caucasian Machine Testing Station, Zernogradsky District, Rostov Region, Scale 1:25,000; Cartographic Branch of Roszemproekt: Saratov, Russia, 1983.
- Arnold, R.; Blume, H.P.; Bockheim, J.; Boyadgiev, T.; Bridges, E.; Brinkman, R.; Broll, G.; Bronger, A.; Constantini, E.; Creutzberg, D.; et al. World Reference Base for Soil Resources: IUSS Working Group WRB. FAO; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 1998. [Google Scholar]
- State Standard of the USSR 26213-91. Soils. Methods for Determination of Organic Matter. 1993. Available online: http://docs.cntd.ru/document/1200023481 (accessed on 1 June 2023).
- Walkley, A.J.; Black, I.A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- ArcGIS. Available online: https://www.esri.com/ru-ru/arcgis/about-arcgis/overview (accessed on 1 June 2023).
- Erdas Imagine. Available online: https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine (accessed on 1 June 2023).
- Egorov, V.V.; Fridland, V.M.; Ivanova, E.N.; Rozov, N.N.; Nosin, V.A.; Friev, T.A. (Eds.) Classification and Diagnostics of Soils of the USSR (Russian Translations Series, 42); U.S. Department of Agriculture, and the National Science Foundation: Washington, DC, USA, 1986. [Google Scholar]
- National Soil Atlas of the Russian Federation. Available online: https://soil-db.ru/soilatlas/razdel-3-pochvy-rossiyskoy-federacii/kashtanovye-i-temno-kashtanovye-pochvy-kashtanovye-i-temno-kashtanovye-micelyarno-karbonatnye-pochvy (accessed on 1 June 2023).
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Bou Kheir, R.; Greve, M.B.; Greve, M.H. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Coull, M.C. Mapping soil carbon stocks across Scotland using a neural network model. Geoderma 2016, 262, 187–198. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 2011, 340, 7–24. [Google Scholar] [CrossRef]
- Vaudour, E.; Gholizadeh, A.; Castaldi, F.; Saberioon, M.; Borůvka, L.; Urbina-Salazar, D.; Fouad, Y.; Arrouays, D.; Richer-de-Forges, A.C.; Biney, J.; et al. Satellite imagery to map topsoil organic carbon content over cultivated areas: An overview. Remote Sens. 2022, 14, 2917. [Google Scholar] [CrossRef]
- Orlov, D.S.; Sukhanova, N.I.; Rozanova, M.S. Spectral Reflectance of Soils and Their Components; Moscow State University: Mocsow, Russia, 2001; 176p. [Google Scholar]
- Karmanov, I.I. Spectral Reflectance and Color of Soils as Indicators of Their Properties; Kolos: Moscow, Russia, 1974; 351p. [Google Scholar]
- Vieira, A.S.; do Valle Junior, R.F.; Rodrigues, V.S.; da Silva Quinaia, T.L.; Mendes, R.G.; Valera, C.A.; Fernandes, L.F.S.; Pacheco, F.A.L. Estimating water erosion from the brightness index of orbital images: A framework for the prognosis of degraded pastures. Sci. Total Environ. 2021, 776, 146019. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 2017, 298, 118–137. [Google Scholar] [CrossRef]
Soil Number in the Legend of SIC “C” Map and Profiles Description | The Name of the Soil in the Legend of the SIC “C” Map and the Description of the Soil Profiles | The Range of the Coefficient “C” Values | Soil Area of SIC “C” Map (ha) |
---|---|---|---|
1 | Chernozem-meadow slitized | 0.103–0.140 | 154.71 |
2 | Meadow-chernozem deeply slitized | 0.140–0.144 | 111.69 |
3 | Meadow-chernozem | 0.144–0.148 | 218.88 |
4 | Ordinary chernozem | 0.148–0.153 | 906.66 |
5 | Ordinary chernozem slightly eroded | 0.153–0.158 | 626.04 |
6 | Ordinary chernozem moderately eroded | 0.158–0.163 | 84.87 |
7 | Ordinary chernozem strongly eroded | 0.163–0.199 | 55.35 |
2158.2 (total) |
Soil Number in the Legend of a TSM | Name of the Soil in the Legend of the TSM | The Range of the “C” Coefficient Values (Min-Max) for the Contours of a TSM | Soil Area of TSM (ha) |
---|---|---|---|
1 | Meadow-chernozem | 0.114–0.154 | 51.19 |
2 | Ordinary chernozem | 0.114–0.176 | 357.69 |
3 | Ordinary chernozem slightly deflated | 0.103–0.172 | 1194.90 |
4 | Ordinary chernozem non-eroded and slightly eroded (10–25%) | 0.117–0.180 | 484.34 |
5 | Ordinary chernozem slightly eroded | 0.133–0.199 | 127.17 |
2215.29 (total) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, A.D.; Komissarov, M.A. Updating of the Archival Large-Scale Soil Map Based on the Multitemporal Spectral Characteristics of the Bare Soil Surface Landsat Scenes. Remote Sens. 2023, 15, 4491. https://doi.org/10.3390/rs15184491
Rukhovich DI, Koroleva PV, Rukhovich AD, Komissarov MA. Updating of the Archival Large-Scale Soil Map Based on the Multitemporal Spectral Characteristics of the Bare Soil Surface Landsat Scenes. Remote Sensing. 2023; 15(18):4491. https://doi.org/10.3390/rs15184491
Chicago/Turabian StyleRukhovich, Dmitry I., Polina V. Koroleva, Alexey D. Rukhovich, and Mikhail A. Komissarov. 2023. "Updating of the Archival Large-Scale Soil Map Based on the Multitemporal Spectral Characteristics of the Bare Soil Surface Landsat Scenes" Remote Sensing 15, no. 18: 4491. https://doi.org/10.3390/rs15184491
APA StyleRukhovich, D. I., Koroleva, P. V., Rukhovich, A. D., & Komissarov, M. A. (2023). Updating of the Archival Large-Scale Soil Map Based on the Multitemporal Spectral Characteristics of the Bare Soil Surface Landsat Scenes. Remote Sensing, 15(18), 4491. https://doi.org/10.3390/rs15184491