Cool Skin Effect as Seen from a New Generation Geostationary Satellite Himawari-8
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Data Matchup
3. Results
3.1. Cool Skin Effect as Seen from Himawari-8 SST
3.2. Cool Skin Dependence on Wind Speed
3.3. Warm Skin Signals
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACSPO | Advanced Clear-Sky Processor for Oceans |
ACSM | ACSPO Clear-Sky Mask |
AHI | Advanced Himawari Imager |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ECV | Essential Climate Variable |
EOV | Essential Ocean Variable |
ERA5 | ReAnalysis 5th Generation |
GDS | GHRSST Data Specification |
GHRSST | Group for High Resolution Sea Surface Temperature |
iQuam | in situ SST Quality Monitor |
JAXA | Japan Aerospace Exploration Agency |
L3C | Level 3 Collected |
LHF | Latent Heat Flux |
LWR | Longwave Radiation |
NLSST | Non-Linear SST |
NWP | Numerical Weather Prediction |
ORAS5 | Ocean ReAnalysis System 5 |
QL | Quality Level |
SHF | Sensible Heat Flux |
SIF | Sea Ice Fraction |
SSS | Sea Surface Salinity |
SST | Sea Surface Temperature |
STAR | Centre for Satellite Applications and Research |
STD | Standard Deviation |
SWR | Shortwave Radiation |
Tbulk | Bulk SST |
Tdepth | Subsurface SST |
Tskin | Skin SST |
U10 | 10 m Wind Speed |
VZA | View Zenith Angle |
ΔTa-s | Air–sea Temperature Difference |
Appendix A
References
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Centurioni, L.R.; Turton, J.; Lumpkin, R.; Braasch, L.; Brassington, G.; Chao, Y.; Charpentier, E.; Chen, Z.; Corlett, G.; Dohan, K.; et al. Global in situ Observations of Essential Climate and Ocean Variables at the Air–Sea Interface. Front. Mar. Sci. 2019, 6, 00419. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L.; et al. Observational Needs of Sea Surface Temperature. Front. Mar. Sci. 2019, 6, 00420. [Google Scholar] [CrossRef]
- von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. Ocean. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Hughes, K.G.; Moum, J.N.; Shroyer, E.L. Heat Transport through Diurnal Warm Layers. J. Phys. Oceanogr. 2020, 50, 2885–2905. [Google Scholar] [CrossRef]
- Prytherch, J.; Farrar, J.T.; Weller, R.A. Moored surface buoy observations of the diurnal warm layer. J. Geophys. Res. Ocean. 2013, 118, 4553–4569. [Google Scholar] [CrossRef]
- Thompson, E.J.; Moum, J.N.; Fairall, C.W.; Rutledge, S.A. Wind Limits on Rain Layers and Diurnal Warm Layers. J. Geophys. Res. Ocean. 2019, 124, 897–924. [Google Scholar] [CrossRef]
- Saunders, P.M. The Temperature at the Ocean-Air Interface. J. Atmos. Sci. 1967, 24, 269–273. [Google Scholar] [CrossRef]
- Hasse, L. The sea surface temperature deviation and the heat flow at the sea-air interface. Bound. Layer Meteorol. 1971, 1, 368–379. [Google Scholar] [CrossRef]
- Schluessel, P.; Emery, W.J.; Grassl, H.; Mammen, T. On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res. Ocean. 1990, 95, 13341–13356. [Google Scholar] [CrossRef]
- Alappattu, D.P.; Wang, Q.; Yamaguchi, R.; Lind, R.J.; Reynolds, M.; Christman, A.J. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies. J. Geophys. Res. Ocean. 2017, 122, 6470–6481. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Akella, S. Regional and Seasonal Variability of the Oceanic Thermal Skin Effect. J. Geophys. Res. Ocean. 2022, 127, e2022JC018465. [Google Scholar] [CrossRef]
- Minnett, P.J.; Smith, M.; Ward, B. Measurements of the oceanic thermal skin effect. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 861–868. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Ignatov, A.; Babanin, A.V. Nighttime Cool Skin Effect Observed from Infrared SST Autonomous Radiometer (ISAR) and Depth Temperatures. J. Atmos. Ocean. Technol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Zhang, H.; Babanin, A.V.; Liu, Q.; Ignatov, A. Cool skin signals observed from Advanced Along-Track Scanning Radiometer (AATSR) and in situ SST measurements. Remote Sens. Environ. 2019, 226, 38–50. [Google Scholar] [CrossRef]
- Clayson, C.A.; Bogdanoff, A.S. The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air–Sea Fluxes. J. Clim. 2013, 26, 2546–2556. [Google Scholar] [CrossRef]
- Masson, S.; Terray, P.; Madec, G.; Luo, J.-J.; Yamagata, T.; Takahashi, K. Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim. Dyn. 2012, 39, 681–707. [Google Scholar] [CrossRef]
- Robertson, J.E.; Watson, A.J. Thermal skin effect of the surface ocean and its implications for CO2 uptake. Nature 1992, 358, 738–740. [Google Scholar] [CrossRef]
- Zeng, X.; Beljaars, A. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett. 2005, 32, L14605. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, F.; Wang, X.; Wang, D.; Gulev, S.K. Cool Skin Effect and its Impact on the Computation of the Latent Heat Flux in the South China Sea. J. Geophys. Res. Ocean. 2020, 126, e2020JC016498. [Google Scholar] [CrossRef]
- Mignot, A.; von Schuckmann, K.; Landschützer, P.; Gasparin, F.; van Gennip, S.; Perruche, C.; Lamouroux, J.; Amm, T. Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Nat. Commun. 2022, 13, 4300. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Watson, A.J.; Schuster, U.; Shutler, J.D.; Holding, T.; Ashton, I.G.C.; Landschützer, P.; Woolf, D.K.; Goddijn-Murphy, L. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat. Commun. 2020, 11, 4422. [Google Scholar] [CrossRef]
- Dong, Y.; Bakker, D.C.; Bell, T.G.; Huang, B.; Landschützer, P.; Liss, P.S.; Yang, M. Update on the Temperature Corrections of Global Air-Sea CO2 Flux Estimates. Glob. Biogeochem. Cycles 2022, 36, e2022GB007360. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Pennybacker, M. Optimization of Sensitivity of GOES-16 ABI Sea Surface Temperature by Matching Satellite Observations with L4 Analysis. Remote Sens. 2019, 11, 206. [Google Scholar] [CrossRef]
- Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P. Near real time SST retrievals from Himawari-8 at NOAA using ACSPO system. In Proceedings of the Ocean Sensing and Monitoring VIII, Baltimore, MD, USA, 17 April 2016; p. 98270. [Google Scholar]
- Donlon, C.J.; Casey, K.S.; Robinson, I.S.; Gentemann, C.L.; Reynolds, R.W.; Barton, I.; Arino, O.; Stark, J.; Rayner, N.; LeBorgne, P. The GODAE high-resolution sea surface temperature pilot project. Oceanography 2009, 22, 34–45. [Google Scholar] [CrossRef]
- Gladkova, I.; Ignatov, A.; Semenov, A. Analysis of ABI bands and regressors in the ACSPO GEO NLSST algorithm. In Proceedings of the Ocean Sensing and Monitoring XIV, Orlando, FL, USA, 3 April–13 June 2022; p. 3. [Google Scholar]
- Petrenko, B.; Ignatov, A.; Kramar, M.; Kihai, Y.; Zhou, X.; He, K. Diurnal cycles in the NOAA ACSPO “depth” and “skin” SST from the new generation ABI/AHI geostationary sensors. In Proceedings of the GHRSST-XVIII, Qingdao, China, 5–9 June 2017. [Google Scholar]
- Wick, G.A.; Castro, S.L. Assessment of Extreme Diurnal Warming in Operational Geosynchronous Satellite Sea Surface Temperature Products. Remote Sens. 2020, 12, 3771. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In situ SST Quality Monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.E. Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 2016, 30, 1396–1417. [Google Scholar] [CrossRef]
- Meeus, J. Astronomical Algorithms; Willmann-Bell: Richmond, VA, USA, 1991. [Google Scholar]
- Tu, Q.; Hao, Z. Validation of Sea Surface Temperature Derived From Himawari-8 by JAXA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 448–459. [Google Scholar] [CrossRef]
- NOAA/NESDIS/STAR. GHRSST NOAA/STAR Himawari-08 AHI L3C Pacific Ocean Region SST v2.70 Dataset in GDS2. 2020. Available online: https://podaac.jpl.nasa.gov/dataset/AHI_H08-STAR-L3C-v2.70 (accessed on 16 March 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present—Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 16 March 2023).
- Landschützer, P.; Gruber, N.; Bakker, D.C.E. An Observation-Based Global Monthly Gridded Sea Surface pCO2 and Air-Sea CO2 Flux Product from 1982 Onward and Its Monthly Climatology (NCEI Accession 0160558). 2020. Available online: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0160558/MPI_SOM-FFN_v2021/ (accessed on 31 December 2022).
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Ocean. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Weiss, R.F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Henry, W.; Banks, J. III. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. R. Soc. Lond. 1803, 93, 29–274. [Google Scholar] [CrossRef]
- Zeebe, R.E.; Wolf-Gladrow, D. Chapter 1 Equilibrium. In Elsevier Oceanography Series; Zeebe, R.E., Wolf-Gladrow, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 65, pp. 1–84. [Google Scholar]
- Jones, D.C.; Ito, T.; Takano, Y.; Hsu, W.-C. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide. Glob. Biogeochem. Cycles 2014, 28, 1163–1178. [Google Scholar] [CrossRef]
Tskin Source | Cool Skin Model | n | Region | Latitude Range 1 | Mean (K) | STD (K) | ΔT > 0 |
---|---|---|---|---|---|---|---|
Ship | [14] | 2607 | Global | 50°S–48°N | −0.17 | 0.06 | Not available |
Ship | [16] | 311 | Offshore New Zealand | 41°S–48°S | −0.20 | 0.13 | Nearly none |
Ship | [13] | 2123 | Offshore North Carolina, USA | 36°N–37°N | −0.40 | 0.20 | 1.5% |
Ship | [17] | 7239 | Offshore Australia | 17°S–66°S | −0.23 | 0.05 | 3.7% |
Buoy | [23] | 628 | South China Sea | ~17°N | −0.40 | 0.02 | <5.0% |
Polar-orbiting Satellite | [18] | 594,777 | Global | 80°S–80°N | −0.13 | 0.46 | 14.0% |
Geostationary Satellite | this study | 656,213 | Himawari-8 disk | 60°S–60°N | −0.16 | 0.32 | 27.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, Z. Cool Skin Effect as Seen from a New Generation Geostationary Satellite Himawari-8. Remote Sens. 2023, 15, 4408. https://doi.org/10.3390/rs15184408
Zhang Y, Chen Z. Cool Skin Effect as Seen from a New Generation Geostationary Satellite Himawari-8. Remote Sensing. 2023; 15(18):4408. https://doi.org/10.3390/rs15184408
Chicago/Turabian StyleZhang, Yueqi, and Zhaohui Chen. 2023. "Cool Skin Effect as Seen from a New Generation Geostationary Satellite Himawari-8" Remote Sensing 15, no. 18: 4408. https://doi.org/10.3390/rs15184408
APA StyleZhang, Y., & Chen, Z. (2023). Cool Skin Effect as Seen from a New Generation Geostationary Satellite Himawari-8. Remote Sensing, 15(18), 4408. https://doi.org/10.3390/rs15184408