Deep Hybrid Compression Network for Lidar Point Cloud Classification and Segmentation
Abstract
:1. Introduction
- (1)
- To circumvent the problem of complex search for discrete sparsity and bit space, a novel differential search for optimal weight sparsity and optimal bit allocation of weight and activation is specially designed, with a cascade of ‘pruning before quantization’.
- (2)
- To alleviate the performance degradation of the point cloud deep compression model caused by pooling operation based on theoretical analysis, the feature knowledge distillation method is utilized to recover the pooled feature fidelity.
- (3)
- Experiments are conducted on the three typical datasets of ModelNet40, ShapeNet, and S3DIS for classification, part-segmentation, and semantic segmentation, respectively, to validate the efficiency and scalability; model complexity is also analyzed.
2. Methods
2.1. Relaxed Cascading Compression
2.1.1. Relaxed Mixed-Weight Pruning
2.1.2. Relaxed Mixed Quantization
2.2. Knowledge Distillation
2.2.1. Theoretical Analysis
2.2.2. Feature-Based Distillation
2.2.3. Response-Based Distillation
2.3. Training
2.3.1. Loss Function
2.3.2. Training Strategy
2.3.3. Parameter Setting and Datasets
2.3.4. Assessment Indicator
3. Experimental Results
3.1. Ablation Experiment
3.1.1. Pruning Ablation
3.1.2. Quantization Ablation
3.1.3. Distillation Ablation
3.2. Comparative Experiment
3.3. Extended Experiment
3.3.1. Segmentation Experiment
3.3.2. Other Backbones
3.4. Visualization
3.4.1. Part-Segmentation
3.4.2. Semantic Segmentation
3.5. Complexity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Theoretical Analysis of Pooled Feature Degradation
Appendix B. Algorithm of the Hybrid Compression Model Training
Algorithm A1: Hybrid Compression Model Training. |
Input: point clouds data ; discrete sparsity space ; discrete bit spaces and ; pre-trained teacher network ; randomly initialized compressed model ; temperature ; hyper-parameter , , and ; model complexity constraint ; learning rate . Output: hybrid compression network . |
Phase I Evaluate the pre-trained full-precision network and start training. Forward Propagation To relax mixed-weight pruning, . To relax the mixed quantization of weights and activation, compute the conv/fc feature map . Compute pooled feature distillation loss . Compute the model complexity . Compute the total loss using Equation (A2). Backward Propagation Compute the weight gradient . Compute the relaxing hyper-parameter gradient . Phase II Resume from the best test checkpoint of Phase I Implement mixed pruning and quantization as in Phase I Compute the response-based distillation loss . Compute the total loss using . |
References
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proc. IEEE 2020, 108, 485–532. [Google Scholar] [CrossRef]
- Liu, S.; Du, J.; Nan, K.; Zhou, Z.; Liu, H.; Wang, Z.; Lin, Y. AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles. IEEE Trans. Mob. Comput. 2020, 20, 3282–3297. [Google Scholar] [CrossRef]
- Qi, Q.; Lu, Y.; Li, J.; Wang, J.; Sun, H.; Liao, J. Learning Low Resource Consumption CNN Through Pruning and Quantization. IEEE Trans. Emerg. Top. Comput. 2021, 10, 886–903. [Google Scholar] [CrossRef]
- Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training Deep Neural Networks with binary weights during propagations. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 3123–3131. [Google Scholar]
- Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks. In Proceedings of the Advances in Neural Information Processing Systems 29 (NeurIPS), Barcelona, Spain, 5–10 December 2016; pp. 4107–4115. [Google Scholar]
- Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolu-tional neural network. In European Conference on Computer Vision (ECCV); Springer: Cham, Switzerland, 2016; pp. 525–542. [Google Scholar]
- Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P.I.-J.; Srinivasan, V.; Gopalakrishnan, K. PACT: Parameterized clipping activation for quantized neural networks. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Mishra, A.K.; Nurvitadhi, E.; Cook, J.J.; Marr, D. WRPN: Wide reduced-precision networks. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Darabi, S.; Belbahri, M.; Courbariaux, M.; Nia, V. BNN+: Improved Binary Network Training. arXiv 2018, arXiv:1812.11800v2. [Google Scholar]
- Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; Cheng, K. Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 747–763. [Google Scholar]
- Cai, Z.; He, X.; Sun, J.; Vasconcelos, N. Deep Learning with Low Precision by Half-Wave Gaussian Quantization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5406–5414. [Google Scholar]
- Qin, H.; Gong, R.; Liu, X.; Shen, M.; Wei, Z.; Yu, F.; Song, J. Forward and Backward Information Retention for Accurate Binary Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2247–2256. [Google Scholar]
- Yin, P.; Zhang, S.; Lyu, J.; Osher, S.; Qi, Y.; Xin, J. Blended coarse gradient descent for full quantization of deep neural networks. Res. Math. Sci. 2018, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Yao, Z.; Dong, Z.; Gholami, A.; Mahoney, M.W.; Keutzer, K. ZeroQ: A Novel Zero Shot Quantization Framework. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 13166–13175. [Google Scholar]
- Yang, H.; Gui, S.; Zhu, Y.; Liu, J. Automatic Neural Network Compression by Sparsity-Quantization Joint Learning: A Constrained Optimization-Based Approach. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2019; pp. 2175–2185. [Google Scholar]
- Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; Han, S. HAQ: Hardware-Aware Automated Quantization with Mixed Precision. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2018; pp. 8604–8612. [Google Scholar]
- Lou, Q.; Guo, F.; Liu, L.; Kim, M.; Jiang, L. AutoQ: Automated Kernel-Wise Neural Network Quantization. arXiv 2019, arXiv:1902.05690v3. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Rethinking Differentiable Search for Mixed-Precision Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2346–2355. [Google Scholar]
- Yang, L.; Jin, Q. FracBits: Mixed Precision Quantization via Fractional Bit-Widths. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2020; pp. 10612–10620. [Google Scholar]
- Song, H.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural network. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 1135–1143. [Google Scholar]
- Wang, C.; Wang, C.; Zhang, G.; Grosse, R.B. Picking Winning Tickets Before Training by Preserving Gradient Flow. arXiv 2020, arXiv:2002.07376. [Google Scholar]
- Zhou, A.; Ma, Y.; Zhu, J.; Liu, J.; Zhang, Z.; Yuan, K.; Sun, W.; Li, H. Learning N: M Fine-grained Structured Sparse Neural Networks from Scratch. arXiv 2021, arXiv:2102.04010. [Google Scholar]
- Guo, S.; Wang, Y.; Li, Q.; Yan, J. DMCP: Differentiable Markov Channel Pruning for Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1536–1544. [Google Scholar]
- Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; Shao, L. HRank: Filter Pruning Using High-Rank Feature Map. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1526–1535. [Google Scholar]
- Hinton, G.E.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Passban, P.; Wu, Y.; Rezagholizadeh, M.; Liu, Q. ALP-KD: Attention-Based Layer Projection for Knowledge Distillation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Virtually, 2–9 February 2021; pp. 13657–13665. [Google Scholar]
- Tan, H.; Liu, X.; Liu, M.; Yin, B.; Li, X. KT-GAN: Knowledge-Transfer Generative Adversarial Network for Text-to-Image Synthesis. IEEE Trans. Image Process. 2021, 30, 1275–1290. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Shou, L.; Pei, J.; Lin, W.; Gong, M.; Fu, Y.; Jiang, D. Reinforced Multi-Teacher Selection for Knowledge Distillation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Virtually, 2–9 February 2021; pp. 14284–14291. [Google Scholar]
- Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. arXiv 2018, arXiv:1806.09055. [Google Scholar]
- Ye, P.; Li, B.; Li, Y.; Chen, T.; Fan, J.; Ouyang, W. β-DARTS: Beta-Decay Regularization for Differentiable Architecture Search. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 10864–10873. [Google Scholar]
- Zhang, M.; Su, S.; Pan, S.; Chang, X.; Abbasnejad, E.; Haffari, R. iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients. In Proceedings of the International Conference on Machine Learning (ICML), Virtual, 18–24 July 2021; pp. 12557–12566. [Google Scholar]
- Li, C.; Ning, J.; Hu, H.; He, K. Enhancing the Robustness, Efficiency, and Diversity of Differentiable Architecture Search. arXiv 2022, arXiv:2204.04681. [Google Scholar]
- Qin, Y.; Wang, X.; Zhang, Z.; Zhu, W. Graph Differentiable Architecture Search with Structure Learning. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Online, 6–14 December 2021; pp. 2182–2186. [Google Scholar]
- Qi, C.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Chang, A.X.; Funkhouser, T.A.; Guibas, L.J.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. ShapeNet: An Information-Rich 3D Model Repository. arXiv 2015, arXiv:1512.03012. [Google Scholar]
- Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.K.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1534–1543. [Google Scholar]
- Qi, C.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5105–5114. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution On X-Transformed Points. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Montréal, QC, Canada, 3–8 December 2018; pp. 828–838. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. TOG 2018, 38, 1–12. [Google Scholar]
- Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 8887–8896. [Google Scholar]
- Thomas, H.; Qi, C.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar]
Layer-Wise Uniform Pruning | Relaxed Mixed Pruning | ||
---|---|---|---|
Threshold Factor | Accuracy (%) | Average Threshold Factor (≈) | Accuracy (%) |
0.025 | 84.5 | 0.025 | 85.7 |
0.050 | 84.7 | 0.050 | 85.3 |
0.075 | 83.9 | 0.075 | 85.0 |
0.100 | 83.8 | 0.100 | 84.8 |
0.150 | 81.7 | 0.150 | 84.0 |
0.200 | 75.9 | 0.200 | 81.5 |
0.250 | 62.4 | 0.250 | 77.4 |
0.300 | 55.4 | 0.300 | 68.3 |
0.350 | 51.9 | 0.350 | 64.0 |
0.400 | 15.9 | 0.400 | 56.4 |
0.450 | 8.4 | 0.450 | 54.4 |
0.500 | 13.9 | 0.500 | 36.8 |
Method | Complexity Factor | Bit Width Nw/bit|Na/bit | Accuracy (%) | |
---|---|---|---|---|
Relaxed Mixed Quantization | 1 × 10−1 | Average bit (≈) | 1.000|2.125 | 85.6 |
1 × 10−2 | 1.125|2.125 | 85.6 | ||
1 × 10−3 | 1.250|2.375 | 86.0 | ||
1 × 10−4 | 1.563|2.812 | 85.9 | ||
1 × 10−5 | 1.688|3.375 | 85.7 | ||
1 × 10−6 | 2.563|3.750 | 86.3 | ||
1 × 10−7 | 2.188|3.688 | 85.6 | ||
1 × 10−8 | 2.438|3.688 | 85.4 | ||
1 × 10−9 | 2.313|3.750 | 85.6 |
Method (Complexity Factor: 1 × 10−6) | Feature KD Type I | Feature KD Type II | |
---|---|---|---|
Feature KD | 86.7 | 87.3 | |
Response KD | 87.3 | 87.5 | |
87.3 | 87.8 | ||
87.1 | 87.6 |
Complexity Factor | Bit Width Nw/bit|Na/bit | Accuracy (%) | Feature KD II Accuracy (%) |
---|---|---|---|
1 × 10−1 | 1.000|2.125 | 85.6 | 86.6 |
1 × 10−2 | 1.125|2.125 | 85.6 | 86.6 |
1 × 10−3 | 1.250|2.375 | 86.0 | 86.3 |
1 × 10−4 | 1.563|2.812 | 85.9 | 86.0 |
1 × 10−5 | 1.688|3.375 | 85.7 | 86.4 |
1 × 10−6 | 2.563|3.750 | 86.3 | 87.3 |
1 × 10−7 | 2.188|3.688 | 85.6 | 86.5 |
1 × 10−8 | 2.438|3.688 | 85.4 | 86.6 |
1 × 10−9 | 2.313|3.750 | 85.6 | 86.5 |
Method | Complexity Factor | Weight Sparsity | Bit Width Nw/bit|Na/bit | Accuracy (%) | ||
---|---|---|---|---|---|---|
Full Precision | – | 0 | 32|32 | 88.2 | ||
Uniform Quantization | BNN | – | 0 | 1|1 | 26.8 | |
XNOR-Net | – | 0 | 1|1 | 71.8 | ||
IRNet | – | 0 | 1|1 | 18.5 | ||
Bi-Real | – | 0 | 1|1 | 57.3 | ||
BiPointNet | – | 0 | 1|1 | 86.1 | ||
TTQ | – | 0 | 2|2 | 67.5 | ||
TWN | – | 0 | 2|2 | 71.4 | ||
HWGQ | – | 0 | 3|3 | 79.5 | ||
HWGQ | – | 0 | 4|4 | 81.3 | ||
Hybrid Compression Method | 0.5 × 10−6 | 2.8% | Average bit (≈) | 3.000|3.933 | 88.1 |
Method | Airplane | Bag | Cap | Car | Chair | Ear Phone | Guitar | Knife | Lamp | Laptop | Motor | Mug | Pistol | Rocket | Skate Board | Table |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet 32|32 | 83.1 | 89.0 | 95.2 | 78.3 | 90.4 | 78.1 | 93.3 | 92.9 | 81.9 | 97.9 | 70.7 | 95.9 | 81.6 | 57.4 | 74.8 | 81.5 |
BNN 1|1 | 36.2 | 51.9 | 68.5 | 26.2 | 55.8 | 57.5 | 50.2 | 63.3 | 50.8 | 90.9 | 26.4 | 69.2 | 57.5 | 31.5 | 47.9 | 69.0 |
HGWQ 3|3 | 77.3 | 69.6 | 84.2 | 67.8 | 86.0 | 62.9 | 85.6 | 81.1 | 75.1 | 94.5 | 45.8 | 90.5 | 75.4 | 46.7 | 56.7 | 73.8 |
HGWQ 4|4 | 78.7 | 72.7 | 86.0 | 70.1 | 86.7 | 65.8 | 87.8 | 81.4 | 75.6 | 94.6 | 48.8 | 91.0 | 77.1 | 48.1 | 60.5 | 75.5 |
Hybrid compression | 80.5 | 84.8 | 89.8 | 74.9 | 87.5 | 74.7 | 90.3 | 84.9 | 76.9 | 95.5 | 60.9 | 93.2 | 80.0 | 55.4 | 70.0 | 78.9 |
Bits 3.28|3.22 | Bits 1.94|2.66 | Bits 1.72|3.00 | Bits 3.28|3.33 | Bits 2.44|3.56 | Bits 2.00|3.00 | Bits 2.06|2.89 | Bits 2.11|3.00 | Bits 2.94|3.06 | Bits 2.28|2.78 | Bits 2.28|3.39 | Bits 2.11|2.83 | Bits 1.94|3.00 | Bits 1.94|2.89 | Bits 2.06|3.11 | Bits 1.83|3.17 | |
WS 5.3% | WS 37.9% | WS 42.8% | WS 5.1% | WS 21.9% | WS 39.6% | WS 23.2% | WS 26.4% | WS 3.9% | WS 25.2% | WS 20.0% | WS 27.6% | WS 30.0% | WS 37.2% | WS 20.1% | WS 31.3% |
Method | Mean mIoU | Overall Accuracy | Area1 mIoU/acc. | Area2 mIoU/acc. | Area3 mIoU/acc. | Area4 mIoU/acc. | Area5 mIoU/acc. | Area6 mIoU/acc. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet Bits 32|32 WS 0 | 51.9 | 82.0 | 59.7/85.1 | 34.7/73.6 | 60.9/87.2 | 43.6/80.9 | 43.1/82.0 | 66.2/88.1 | |||||
BNN Bits 1|1 WS 0 | 11.3 | 44.5 | 11.1/43.2 | 11.6/48.3 | 11.1/43.0 | 11.1/45.9 | 10.5/43.7 | 11.8/42.4 | |||||
HGWQ Bits 3|3 WS 0 | 35.8 | 68.5 | 38.8/68.1 | 25.8/60.3 | 42.5/75.6 | 31.7/68.1 | 31.9/68.8 | 47.1/75.5 | |||||
HGWQ Bits 4|4 WS 0 | 37.7 | 70.5 | 43.1/72.5 | 26.6/63.5 | 44.1/76.0 | 33.8/69.2 | 33.2/69.9 | 49.3/76.8 | |||||
Hybrid compression | 41.9 | 73.8 | 47.0/74.7 | 30.4/67.2 | 47.3/76.8 | 36.5/74.1 | 37.7/74.9 | 50.1/77.0 | |||||
Bits 2.1|2.8 | Bits 1.9|2.8 | Bits 2.1|2.8 | Bits 2.2|2.8 | Bits 2.1|2.7 | Bits 2.2|2.9 | Bits 2.2|2.6 | |||||||
Weight Sparsity(WS) 5.6% | WS 5.6% | WS 5.6% | WS 5.9% | WS 5.6% | WS 5.8% | WS 5.2% | |||||||
Method | Ceiling IoU | Floor IoU | Wall IoU | Beam IoU | Column IoU | Window IoU | Door IoU | Table IoU | Chair IoU | Sofa IoU | Bookcase IoU | Board IoU | Clutter IoU |
PointNet 32|32 | 89.7 | 93.7 | 71.0 | 50.2 | 34.0 | 52.9 | 53.4 | 56.7 | 46.6 | 9.5 | 38.5 | 36.4 | 41.3 |
BNN 1|1 | 46.2 | 48.9 | 20.0 | 0.9 | 0.8 | 4.2 | 5.4 | 3.4 | 8.2 | 0.2 | 5.6 | 1.5 | 1.6 |
HGWQ 3|3 | 79.7 | 81.7 | 55.0 | 23.3 | 7.7 | 31.7 | 37.8 | 43.2 | 36.2 | 4.4 | 25.6 | 15.0 | 23.6 |
HGWQ 4|4 | 81.2 | 83.0 | 57.6 | 26.8 | 14.8 | 29.1 | 41.2 | 40.1 | 35.7 | 4.8 | 30.2 | 19.5 | 25.9 |
Hybrid compression | 85.3 | 86.7 | 60.7 | 28.6 | 13.8 | 39.3 | 46.5 | 47.7 | 38.3 | 7.9 | 33.5 | 27.4 | 28.5 |
Method | Complexity Factor | Weights Sparsity | Bit Width Nw/bit |Na/bit | Accuracy (%) | |
---|---|---|---|---|---|
PointNet | Full Precision | – | 0 | 32|32 | 88.2 |
BiPointNet | – | 0 | 1|1 | 86.1 | |
Hybrid Compression | 0.5 × 10−6 | 2.8% | 3.000|3.933 | 88.1 | |
PointNet++ [39] | Full Precision | – | 0 | 32|32 | 90.7 |
BiPointNet | – | 0 | 1|1 | 88.5 | |
Hybrid Compression | 0.5 × 10−6 | 3.2% | 2.909|3.636 | 89.3 | |
PointCNN [40] | Full Precision | – | 0 | 32|32 | 89.7 |
BiPointNet | – | 0 | 1|1 | 81.5 | |
Hybrid Compression | 0.5 × 10−6 | 3.1% | 2.920|3.720 | 87.6 | |
DGCNN [41] | Full Precision | – | 0 | 32|32 | 90.9 |
BiPointNet | – | 0 | 1|1 | 75.0 | |
Hybrid Compression | 0.5 × 10−6 | 2.9% | 3.000|3.500 | 86.3 | |
RS-CNN [42] | Full Precision | – | 0 | 32|32 | 92.9 |
BiPointNet | – | 0 | 1|1 | 81.6 | |
Hybrid Compression | 0.5 × 10−6 | 3.0% | 3.095|3.690 | 86.5 | |
KPConv [43] | Full Precision | – | 0 | 32|32 | 92.3 |
BiPointNet | – | 0 | 1|1 | 80.8 | |
Hybrid Compression | 0.5 × 10−6 | 2.8% | 2.875|3.750 | 84.8 |
Methods | Bit Width Nw|Na | FLOPs/Sample FN/Mb | Speedup Ratio Sr/1 | Parameter Pa/Mb | Compress Ratio Cr/1 | ||
---|---|---|---|---|---|---|---|
Full Precision | 32|32 | 443.38 | 1× | 3.48 | 1× | ||
Uniform | Binary | BNN | 1|1 | 8.35 | 53.0× | 0.15 | 23.2× |
BiReal | 1|1 | 8.40 | 52.8× | 0.15 | 23.2× | ||
IRNET | 1|1 | 8.94 | 49.6× | 0.16 | 21.8× | ||
XNOR-Net | 1|1 | 9.89 | 44.8× | 0.62 | 5.6× | ||
BiPointNet | 1|1 | 8.46 | 52.4× | 0.15 | 23.2× | ||
Ternary | TTQ | 2|32 | >443.38 × (1-s) | <1/(1-s)× | 0.26 | 13.4× | |
TWN | 2|32 | >443.38 × (1-s) | <1/(1-s)× | 0.26 | 13.4× | ||
HGWQ | 3|3 | 443.38 | 1× | 0.37 | 9.4× | ||
4|4 | 443.38 | 1× | 0.48 | 7.3× | |||
Proposed Hybrid Compression | Nw|Na | >443.38 × (1-s) | <1/(1-s)× | <0.15 × Nw | >23.2/Nw× |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Ma, Y.; Xu, K.; Wan, J. Deep Hybrid Compression Network for Lidar Point Cloud Classification and Segmentation. Remote Sens. 2023, 15, 4015. https://doi.org/10.3390/rs15164015
Zhao Z, Ma Y, Xu K, Wan J. Deep Hybrid Compression Network for Lidar Point Cloud Classification and Segmentation. Remote Sensing. 2023; 15(16):4015. https://doi.org/10.3390/rs15164015
Chicago/Turabian StyleZhao, Zhi, Yanxin Ma, Ke Xu, and Jianwei Wan. 2023. "Deep Hybrid Compression Network for Lidar Point Cloud Classification and Segmentation" Remote Sensing 15, no. 16: 4015. https://doi.org/10.3390/rs15164015
APA StyleZhao, Z., Ma, Y., Xu, K., & Wan, J. (2023). Deep Hybrid Compression Network for Lidar Point Cloud Classification and Segmentation. Remote Sensing, 15(16), 4015. https://doi.org/10.3390/rs15164015