A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area
Abstract
:1. Introduction
2. Methodology
2.1. Grid Sampling Campaigns
2.2. Sampling Method and Analytical Instrument
2.3. Satellite Data (TROPOMI HCHO and NO2 Observations)
2.4. Observation-Based Model
3. Results
3.1. Data Overview
3.2. Comparison of Surface and Column HCHO
3.2.1. Spatial Distribution Characteristics
3.2.2. Correlation Comparison
3.2.3. Dominant Factors
3.3. Development of HCHOsd
3.3.1. Mathematical Techniques for Accuracy Improvement
3.3.2. Sensitivity Tests
3.3.3. Improvement from TROPOMI Level 2 to Level 3
3.4. Applications of TROPOMI Level 3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olaguer, E.P.; Rappengluck, B.; Lefer, B.; Stutz, J.; Dibb, J.; Griffin, R.; Brune, W.H.; Shauck, M.; Buhr, M.; Jeffries, H.; et al. Deciphering the Role of Radical Precursors during the Second Texas Air Quality Study. J. Air Waste Manag. Assoc. 2009, 59, 1258–1277. [Google Scholar] [CrossRef]
- Cooke, M.C.; Utembe, S.R.; Carbajo, P.G.; Archibald, A.T.; Orr-Ewing, A.J.; Jenkin, M.E.; Derwent, R.G.; Lary, D.J.; Shallcross, D.E. Impacts of formaldehyde photolysis rates on tropospheric chemistry. Atmos. Sci. Lett. 2010, 11, 33–38. [Google Scholar] [CrossRef]
- Jia, C.H.; Tong, S.R.; Zhang, X.R.; Li, F.J.; Zhang, W.Q.; Li, W.R.; Wang, Z.; Zhang, G.; Tang, G.Q.; Liu, Z.R.; et al. Atmospheric oxidizing capacity in autumn Beijing: Analysis of the O-3 and PM2.5 episodes based on observation-based model. J. Environ. Sci. 2023, 124, 557–569. [Google Scholar]
- Lowe, D.C.; Schmidt, U. Formaldehyde (HCHO) measurements in the nonurban atmosphere. J. Geophys. Res. 1983, 88, 10844–10858. [Google Scholar] [CrossRef]
- Wolfe, G.M.; Kaiser, J.; Hanisco, T.F.; Keutsch, F.N.; de Gouw, J.A.; Gilman, J.B.; Graus, M.; Hatch, C.D.; Holloway, J.; Horowitz, L.W.; et al. Formaldehyde production from isoprene oxidation across NOx regimes. Atmos. Chem. Phys. 2016, 16, 2597–2610. [Google Scholar] [CrossRef] [PubMed]
- Abbot, D.S.; Palmer, P.I.; Martin, R.V.; Chance, K.V.; Jacob, D.J.; Guenther, A. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Palmer, P.I.; Jacob, D.J.; Fiore, A.M.; Martin, R.V.; Chance, K.; Kurosu, T.P. Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res.-Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Millet, D.B.; Jacob, D.J.; Turquety, S.; Hudman, R.C.; Wu, S.L.; Fried, A.; Walega, J.; Heikes, B.G.; Blake, D.R.; Singh, H.B.; et al. Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. J. Geophys. Res.-Atmos. 2006, 111, D24S02. [Google Scholar] [CrossRef]
- Zhao, T.L.; Mao, J.Q.; Simpson, W.R.; De Smedt, I.; Zhu, L.; Hanisco, T.F.; Wolfe, G.M.; St Clair, J.M.; Abad, G.G.; Nowlan, C.R.; et al. Source and variability of formaldehyde (HCHO) at northern high latitudes: An integrated satellite, aircraft, and model study. Atmos. Chem. Phys. 2022, 22, 7163–7178. [Google Scholar]
- Zhang, H.L.; Li, J.Y.; Ying, Q.; Guven, B.B.; Olaguer, E.P. Source apportionment of formaldehyde during TexAQS 2006 using a source-oriented chemical transport model. J. Geophys. Res. Atmos. 2013, 118, 1525–1535. [Google Scholar] [CrossRef]
- Su, W.J.; Liu, C.; Hu, Q.H.; Zhao, S.H.; Sun, Y.W.; Wang, W.; Zhu, Y.Z.; Liu, J.G.; Kim, J. Primary and secondary sources of ambient formaldehyde in the Yangtze River Delta based on Ozone Mapping and Profiler Suite (OMPS) observations. Atmos. Chem. Phys. 2019, 19, 6717–6736. [Google Scholar] [CrossRef]
- Wang, B.; Lee, S.C.; Ho, K.F. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China. Atmos. Environ. 2007, 41, 2851–2861. [Google Scholar] [CrossRef]
- Chi, Y.; Feng, Y.; Wen, S.; Lu, H.; Yu, Z.; Zhang, W.; Sheng, G.; Fu, J. Determination of carbonyl compounds in the atmosphere by DNPH derivatization and LC-ESI-MS/MS detection. Talanta 2007, 72, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, L.; Dong, C.; Wang, T.; Mellouki, A.; Zhang, Q.; Wang, W. Gaseous carbonyls in China’s atmosphere: Tempo-spatial distributions, sources, photochemical formation, and impact on air quality. Atmos. Environ. 2019, 214, 116863. [Google Scholar]
- Lu, H.; Cai, Q.Y.; Wen, S.; Chi, Y.; Guo, S.; Sheng, G.; Fu, J. Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou, China. Sci. Total Environ. 2010, 408, 3523–3529. [Google Scholar] [CrossRef] [PubMed]
- Szulejko, J.E.; Kim, K.-H. Derivatization techniques for determination of carbonyls in air. TrAC Trends Anal. Chem. 2015, 64, 29–41. [Google Scholar]
- Chance, K.; Palmer, P.I.; Spurr, R.J.D.; Martin, R.V.; Kurosu, T.P.; Jacob, D.J. Satellite observations of formaldehyde over North America from GOME. Geophys. Res. Lett. 2000, 27, 3461–3464. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Forster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, U.; Ahn, M.H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.S.; Lee, K.H.; Yoo, J.M.; et al. New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, E1–E22. [Google Scholar]
- Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef]
- Courreges-Lacoste, G.B.; Sallusti, M.; Bulsa, G.; Bagnasco, G.; Veihelmann, B.; Riedl, S.; Smith, D.J.; Maurer, R. The Copernicus Sentinel 4 mission—A Geostationary Imaging UVN Spectrometer for Air Quality Monitoring. In Sensors, Systems, and Next-Generation Satellites XXI; SPIE Remote Sensing: Warsaw, Poland, 2017; Volume 10423. [Google Scholar]
- Lui, K.H.; Ho, S.S.H.; Louie, P.K.K.; Chan, C.S.; Lee, S.C.; Hu, D.; Chan, P.W.; Lee, J.C.W.; Ho, K.F. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air. Atmos. Environ. 2017, 152, 51–60. [Google Scholar] [CrossRef]
- Ho, K.F.; Ho, S.S.H.; Huang, R.J.; Dai, W.T.; Cao, J.J.; Tian, L.; Deng, W.J. Spatiotemporal distribution of carbonyl compounds in China. Environ. Pollut. 2015, 197, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, X.-F.; Han, Y.; Zhu, B.; He, L.-Y. Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China. J. Geophys. Res. Atmos. 2017, 122, 11–934. [Google Scholar]
- Yuan, B.; Chen, W.; Shao, M.; Wang, M.; Lu, S.; Wang, B.; Liu, Y.; Chang, C.-C.; Wang, B. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD), China. Atmos. Res. 2012, 116, 93–104. [Google Scholar]
- Cheng, Y.; Lee, S.C.; Huang, Y.; Ho, K.F.; Ho, S.S.H.; Yau, P.S.; Louie, P.K.K.; Zhang, R.J. Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and suburban environment of Hong Kong. Atmos. Environ. 2014, 89, 43–51. [Google Scholar] [CrossRef]
- Lü, H.; Cai, Q.-Y.; Wen, S.; Chi, Y.; Guo, S.; Sheng, G.; Fu, J.; Antizar-Ladislao, B. Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China. Atmos. Res. 2009, 94, 363–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Y.; Meng, F.; Li, H.; Wang, X.; Zhang, W.; Mellouki, A.; Gao, J.; Zhang, X.; Wang, S.; et al. The pollution levels of BTEX and carbonyls under haze and non-haze days in Beijing, China. Sci. Total Environ. 2014, 490, 391–396. [Google Scholar] [CrossRef]
- Shim, C.; Wang, Y.H.; Choi, Y.; Palmer, P.I.; Abbot, D.S.; Chance, K. Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements. J. Geophys. Res.-Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Fu, T.M.; Jacob, D.J.; Palmer, P.I.; Chance, K.; Wang, Y.X.X.; Barletta, B.; Blake, D.R.; Stanton, J.C.; Pilling, M.J. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. J. Geophys. Res.-Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Stavrakou, T.; Muller, J.F.; De Smedt, I.; Van Roozendael, M.; van der Werf, G.R.; Giglio, L.; Guenther, A. Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmos. Chem. Phys. 2009, 9, 3663–3679. [Google Scholar] [CrossRef]
- Marais, E.A.; Jacob, D.J.; Kurosu, T.P.; Chance, K.; Murphy, J.G.; Reeves, C.; Mills, G.; Casadio, S.; Millet, D.B.; Barkley, M.P.; et al. Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmos. Chem. Phys. 2012, 12, 6219–6235. [Google Scholar] [CrossRef]
- Barkley, M.P.; De Smedt, I.; Van Roozendael, M.; Kurosu, T.P.; Chance, K.; Arneth, A.; Hagberg, D.; Guenther, A.; Paulot, F.; Marais, E.; et al. Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns. J. Geophys. Res.-Atmos. 2013, 118, 6849–6868. [Google Scholar] [CrossRef]
- Zhu, L.; Jacob, D.J.; Mickley, L.J.; Marais, E.A.; Cohan, D.S.; Yoshida, Y.; Duncan, B.N.; Abad, G.G.; Chance, K.V. Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns. Environ. Res. Lett. 2014, 9, 114004. [Google Scholar] [CrossRef]
- Bauwens, M.; Stavrakou, T.; Muller, J.F.; De Smedt, I.; Van Roozendael, M.; van der Werf, G.R.; Wiedinmyer, C.; Kaiser, J.W.; Sindelarova, K.; Guenther, A. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos. Chem. Phys. 2016, 16, 10133–10158. [Google Scholar] [CrossRef]
- Kwon, H.A.; Park, R.J.; Oak, Y.J.; Nowlan, C.R.; Janz, S.J.; Kowalewski, M.G.; Fried, A.; Walega, J.; Bates, K.H.; Choi, J.; et al. Top-down estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical column densities from aircraft during the KORUS-AQ campaign. Elem.-Sci. Anthr. 2021, 9, 00109. [Google Scholar] [CrossRef]
- Wang, Y.X.; Lin, N.; Li, W.; Guenther, A.; Lam, J.C.Y.; Tai, A.P.K.; Potosnak, M.J.; Seco, R. Satellite-derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern US. Atmos. Chem. Phys. 2022, 22, 14189–14208. [Google Scholar] [CrossRef]
- Mendoza-Rodriguez, C.A.; Cardenas, C.R.; Espinosa-Ponce, C. Long term (2005–2016) study of formaldehyde (HCHO) columns from satellite data in two regions in the south of Mexico. Evidence of the impact of agricultural activity. Remote Sens. Appl.-Soc. Environ. 2023, 29, 100894. [Google Scholar] [CrossRef]
- Liao, J.; Hanisco, T.F.; Wolfe, G.M.; St Clair, J.; Jimenez, J.L.; Campuzano-Jost, P.; Nault, B.A.; Fried, A.; Marais, E.A.; Abad, G.G.; et al. Towards a satellite formaldehyde—In Situ hybrid estimate for organic aerosol abundance. Atmos. Chem. Phys. 2019, 19, 2765–2785. [Google Scholar]
- Wolfe, G.M.; Nicely, J.M.; Clair, J.M.S.; Hanisco, T.F.; Liao, J.; Oman, L.D.; Brune, W.B.; Miller, D.; Thames, A.; Abad, G.G.; et al. Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proc. Natl. Acad. Sci. USA 2019, 116, 11171–11180. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.D.; Laughner, J.L.; Cohen, R.C. Combining Machine Learning and Satellite Observations to Predict Spatial and Temporal Variation of near Surface OH in North American Cities. Environ. Sci. Technol. 2022, 56, 7362–7371. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.H.; Crawford, J.; Cheng, Y.; Li, J.F. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment. Atmos. Environ. 2018, 180, 226–233. [Google Scholar]
- Cheng, Y.; Wang, Y.H.; Zhang, Y.Z.; Crawford, J.H.; Diskin, G.S.; Weinheimer, A.J.; Fried, A. Estimator of Surface Ozone Using Formaldehyde and Carbon Monoxide Concentrations Over the Eastern United States in Summer. J. Geophys. Res.-Atmos. 2018, 123, 7642–7655. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.T.; Pickering, K.E.; Retscher, C.; Allen, D.J.; et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Jin, X.M.; Fiore, A.M.; Murray, L.T.; Valin, L.C.; Lamsal, L.N.; Duncan, B.; Folkert Boersma, K.; De Smedt, I.; Abad, G.G.; Chance, K.; et al. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity over Midlatitude Source Regions and Application to Decadal Trends. J. Geophys. Res.-Atmos. 2017, 122, 10231–10253. [Google Scholar]
- Jin, X.M.; Fiore, A.; Boersma, K.F.; De Smedt, I.; Valin, L. Inferring Changes in Summertime Surface Ozone-NOx-VOC Chemistry over US Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef]
- Zhu, L.; Jacob, D.J.; Keutsch, F.N.; Mickley, L.J.; Scheffe, R.; Strum, M.; Abad, G.G.; Chance, K.; Yang, K.; Rappengluck, B.; et al. Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States. Environ. Sci. Technol. 2017, 51, 5650–5657. [Google Scholar] [CrossRef] [PubMed]
- Su, W.J.; Hu, Q.H.; Chen, Y.J.; Lin, J.A.; Zhang, C.X.; Liu, C. Inferring global surface HCHO concentrations from multisource hyperspectral satellites and their application to HCHO-related global cancer burden estimation. Environ. Int. 2022, 170, 107600. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, L.I. The dependence of tropospheric ozone production rate on ozone precursors. Atmos. Environ. 2005, 39, 575–586. [Google Scholar] [CrossRef]
- Martin, R.V.; Parrish, D.D.; Ryerson, T.B.; Nicks, D.K.; Chance, K.; Kurosu, T.P.; Jacob, D.J.; Sturges, E.D.; Fried, A.; Wert, B.P. Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States. J. Geophys. Res.-Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Duncan, B.N.; Yoshida, Y.; Krotkov, N.A.; Pickering, K.E.; Streets, D.G.; Lu, Z.F. U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI). Atmos. Environ. 2015, 110, 130–143. [Google Scholar]
- Ma, J.Z.; Beirle, S.; Jin, J.L.; Shaiganfar, R.; Yan, P.; Wagner, T. Tropospheric NO2 vertical column densities over Beijing: Results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation. Atmos. Chem. Phys. 2013, 13, 1547–1567. [Google Scholar]
- Kramer, L.J.; Leigh, R.J.; Remedios, J.J.; Monks, P.S. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area. J. Geophys. Res.-Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Cersosimo, A.; Serio, C.; Masiello, G. TROPOMI NO(2)Tropospheric Column Data: Regridding to 1 km Grid-Resolution and Assessment of their Consistency with In Situ Surface Observations. Remote Sens. 2020, 12, 2212. [Google Scholar]
- De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; et al. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmos. Chem. Phys. 2015, 15, 12519–12545. [Google Scholar]
- Wang, Y.P.; Wang, Z.F.; Yu, C.; Zhu, S.Y.; Cheng, L.X.; Zhang, Y.; Chen, L.F. Validation of OMI HCHO Products Using MAX-DOAS observations from 2010 to 2016 in Xianghe, Beijing: Investigation of the Effects of Aerosols on Satellite Products. Remote Sens. 2019, 11, 203. [Google Scholar]
- Wang, P.D.; Holloway, T.; Bindl, M.; Harkey, M.; De Smedt, I. Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. Remote Sens. 2022, 14, 2191. [Google Scholar] [CrossRef]
- Yang, X.; Xue, L.; Wang, T.; Wang, X.; Gao, J.; Lee, S.; Blake, D.R.; Chai, F.; Wang, W. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry. J. Geophys. Res. Atmos. 2018, 123, 1426–1440. [Google Scholar]
- Yang, X.; Xue, L.; Yao, L.; Li, Q.; Wen, L.; Zhu, Y.; Chen, T.; Wang, X.; Yang, L.; Wang, T.; et al. Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation. Atmos. Res. 2017, 196, 53–61. [Google Scholar]
- Kanaya, Y.; Pochanart, P.; Liu, Y.; Li, J.; Tanimoto, H.; Kato, S.; Suthawaree, J.; Inomata, S.; Taketani, F.; Okuzawa, K.; et al. Rates and regimes of photochemical ozone production over Central East China in June 2006: A box model analysis using comprehensive measurements of ozone precursors. Atmos. Chem. Phys. 2009, 9, 7711–7723. [Google Scholar]
- Huang, J.; Feng, Y.; Li, J.; Xiong, B.; Feng, J.; Wen, S.; Sheng, G.; Fu, J.; Wu, M. Characteristics of carbonyl compounds in ambient air of Shanghai, China. J. Atmos. Chem. 2009, 61, 1–20. [Google Scholar]
- Shen, L.; Jacob, D.J.; Zhu, L.; Zhang, Q.; Zheng, B.; Sulprizio, M.P.; Li, K.; De Smedt, I.; Abad, G.G.; Cao, H.S.; et al. The 2005–2016 Trends of Formaldehyde Columns over China Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions. Geophys. Res. Lett. 2019, 46, 4468–4475. [Google Scholar]
- Wang, H.; Wu, Q.Z.; Guenther, A.B.; Yang, X.C.; Wang, L.N.; Xiao, T.; Li, J.; Feng, J.M.; Xu, Q.; Cheng, H.Q. A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: The roles of land cover change and climate variability. Atmos. Chem. Phys. 2021, 21, 4825–4848. [Google Scholar]
- Pu, D.C.; Zhu, L.; De Smedt, I.; Li, X.C.; Sun, W.F.; Wang, D.K.; Liu, S.; Li, J.; Shu, L.; Chen, Y.Y.; et al. Response of Anthropogenic Volatile Organic Compound Emissions to Urbanization in Asia Probed with TROPOMI and VIIRS Satellite Observations. Geophys. Res. Lett. 2022, 49, 99470. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, L.M.; Cheng, M.M.; Chen, D.M. Estimating Ground-Level Ozone Concentrations in Eastern China Using Satellite-Based Precursors. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4754–4763. [Google Scholar] [CrossRef]
- Jin, X.M.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res.-Atmos. 2015, 120, 7229–7246. [Google Scholar]
- Wang, W.N.; Ronald, V.; Ding, J.Y.; van Weele, M.; Cheng, T.H. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7253–7269. [Google Scholar] [CrossRef]
- Ren, J.; Guo, F.F.; Xie, S.D. Diagnosing ozone-NOx-VOC sensitivity and revealing causes of ozoneincreases in China based on 2013–2021 satellite retrievals. Atmos. Chem. Phys. 2022, 22, 15035–15047. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Zhong, L.J.; Wang, T.; Louie, P.K.K.; Li, Z.C. Ground-level ozone in the Pearl River Delta region: Analysis of data from a recently established regional air quality monitoring network. Atmos. Environ. 2010, 44, 814–823. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, N.; Lyu, X.P.; Zeren, Y.Z.; Jiang, F.; Wang, X.M.; Zou, S.C.; Ling, Z.H.; Guo, H. Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. Sci. Total Environ. 2021, 754, 141812. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.N.; Pei, C.L.; Chen, T.S.; Mu, J.S.; Liu, Y.H.; Wang, Y.J.; Wang, W.X.; Xue, L.K. Worsening ozone air pollution with reduced NOx and VOCs in the Pearl River Delta region in autumn 2019: Implications for national control policy in China. J. Environ. Manag. 2022, 324, 116327. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, T.S.; Pei, C.L.; Chen, D.H.; Lu, L.H.; Xiang, Y. Monitoring of Vertical Distribution of Ozone Using Differential Absorption Lidar in Guangzhou. Chin. J. Lasers-Zhongguo Jiguang 2019, 46, 20220579. [Google Scholar]
- Hong, Y.; Chen, C.; Bao, H.; Shen, J. Sources and Sensitivity Analysis of Ozone in Spring over the Southwestern Part of Pearl River Delta Region. Ecol. Environ. Sci. 2021, 30, 984–994. [Google Scholar]
- Fan, J.; Ju, T.; Wang, Q.; Gao, H.; Huang, R.; Duan, J. Spatiotemporal variations and potential sources of tropospheric formaldehyde over eastern China based on OMI satellite data. Atmos. Pollut. Res. 2021, 12, 272–285. [Google Scholar]
- Louie, P.K.K.; Ho, J.W.K.; Tsang, R.C.W.; Blake, D.R.; Lau, A.K.H.; Yu, J.Z.; Yuan, Z.; Wang, X.; Shao, M.; Zhong, L. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ. 2013, 76, 125–135. [Google Scholar]
- Wang, S.; Zheng, J.; Fu, F.; Yin, S.; Zhong, L. Development of an emission processing system for the Pearl River Delta Regional air quality modeling using the SMOKE model: Methodology and evaluation. Atmos. Environ. 2011, 45, 5079–5089. [Google Scholar]
- Wan, Z.; Ji, S.; Liu, Y.; Zhang, Q.; Chen, J.; Wang, Q. Shipping emission inventories in China’s Bohai Bay, Yangtze River Delta, and Pearl River Delta in 2018. Mar. Pollut. Bull. 2020, 151, 110882. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; He, J.; Chen, H.; Huang, X.; Wang, Y.; Yu, X.; Yang, W.; Zhang, R.; Zhu, M.; et al. Dramatic increase in reactive volatile organic compound (VOC) emissions from ships at berth after implementing the fuel switch policy in the Pearl River Delta Emission Control Area. Atmos. Chem. Phys. 2020, 20, 1887–1900. [Google Scholar]
- Zeren, Y.; Guo, H.; Lyu, X.; Jiang, F.; Wang, Y.; Liu, X.; Zeng, L.; Li, M.; Li, L. An Ozone “Pool” in South China: Investigations on Atmospheric Dynamics and Photochemical Processes Over the Pearl River Estuary. J. Geophys. Res. Atmos. 2019, 124, 12340–12355. [Google Scholar]
- Zheng, J.; Zhang, L.; Che, W.; Zheng, Z.; Yin, S. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ. 2009, 43, 5112–5122. [Google Scholar]
- Mo, X.J.; Gong, D.C.; Liu, Y.F.; Li, J.Y.; Zhao, Y.M.; Zhao, W.L.; Shen, J.; Liao, T.; Wang, H.; Wang, B.G. Ground-based formaldehyde across the Pearl River Delta: A snapshot and meta-analysis study. Atmos. Environ. 2023, 43, 1352–2310. [Google Scholar]
- De Smedt, I.; Pinardi, G.; Vigouroux, C.; Compernolle, S.; Bais, A.; Benavent, N.; Boersma, F.; Chan, K.L.; Donner, S.; Eichmann, K.U.; et al. Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmos. Chem. Phys. 2021, 21, 12561–12593. [Google Scholar]
- Franco, B.; Marais, E.A.; Bovy, B.; Bader, W.; Lejeune, B.; Roland, G.; Servais, C.; Mahieu, E. Diurnal cycle and multi-decadal trend of formaldehyde in the remote atmosphere near 46A degrees aEuro N. Atmos. Chem. Phys. 2016, 16, 4171–4189. [Google Scholar] [CrossRef]
- Sun, K.; Zhu, L.; Cady-Pereira, K.; Miller, C.C.; Chance, K.; Clarisse, L.; Coheur, P.F.; Abad, G.G.; Huang, G.Y.; Liu, X.; et al. A physics-based approach to oversample multi-satellite, multispecies observations to a common grid. Atmos. Meas. Tech. 2018, 11, 6679–6701. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Young, J.C.; Rickard, A.R. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 2015, 309, 11433–11459. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Gong, D.C.; Wang, H.; Guo, H.; Liao, M.P.; Deng, S.; Cai, H.; Wang, B.G. Anthropogenic Pollutants Induce Changes in Peroxyacetyl Nitrate Formation Intensity and Pathways in a Mountainous Background Atmosphere in Southern China. Environ. Sci. Technol. 2023, 57, 6253–6262. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar]
- Xue, L.K.; Wang, T.; Gao, J.; Ding, A.J.; Zhou, X.H.; Blake, D.R.; Wang, X.F.; Saunders, S.M.; Fan, S.J.; Zuo, H.C.; et al. Ground-level ozone in four Chinese cities: Precursors, regional transport and heterogeneous processes. Atmos. Chem. Phys. 2014, 14, 13175–13188. [Google Scholar]
- Chen, T.S.; Xue, L.K.; Zheng, P.G.; Zhang, Y.N.; Liu, Y.H.; Sun, J.J.; Han, G.X.; Li, H.Y.; Zhang, X.; Li, Y.F.; et al. Volatile organic compounds and ozone air pollution in an oil production region in northern China. Atmos. Chem. Phys. 2020, 20, 7069–7086. [Google Scholar]
- Liu, T.T.; Hong, Y.W.; Li, M.R.; Xu, L.L.; Chen, J.S.; Bian, Y.H.; Yang, C.; Dan, Y.B.; Zhang, Y.N.; Xue, L.K.; et al. Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: Analysis of a typical photochemical episode by an observation-based model. Atmos. Chem. Phys. 2022, 22, 2173–2190. [Google Scholar]
- Wang, J.; Zhang, Y.; Wu, Z.; Luo, S.; Song, W.; Wang, X. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. J. Environ. Sci. 2022, 114, 322–333. [Google Scholar]
- Lin, Y.L.; Hong, Y.W.; Ji, X.T.; Xu, K.; Shao, Z.Q.; Yu, R.L.; Chen, J.S. Pollution Characteristics of Atmospheric Formaldehyde (HCHO) and its Environmental Effects in Autumn in a Coastal City. China Environ. Sci. 2022, 43, 52–60. [Google Scholar]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012. (In Chinese)
- Hong, Q.Q.; Zhu, L.B.; Xing, C.Z.; Hu, Q.H.; Lin, H.; Zhang, C.X.; Zhao, C.H.; Liu, T.; Su, W.J.; Liu, C. Inferring vertical variability and diurnal evolution of O-3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China. Sci. Total Environ. 2022, 827, 154045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, J.; Wang, H.; Wu, G.C.; Chen, Y.Q.; Liu, T.; Gong, D.C.; Ou, J.; Shi, Y.K.; Zhang, T.; et al. Unexpected seasonal variations and high levels of ozone observed at the summit of Nanling Mountains: Impact of Asian monsoon on southern China. Atmos. Environ. 2021, 253, 118378. [Google Scholar]
- Kuhlmann, G.; Hartl, A.; Cheung, H.M.; Lam, Y.F.; Wenig, M.O. A novel gridding algorithm to create regional trace gas maps from satellite observations. Atmos. Meas. Tech. 2014, 7, 451–467. [Google Scholar]
- Levelt, P.F.; Van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Zhang, R.; Zhang, T.H.; Ou, C.Q.; Guo, Y.M. A kriging-calibrated machine learning method for estimating daily ground-level NO2 in mainland China. Sci. Total Environ. 2019, 690, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jin, B.H.; Ding, Y.Z.; Wang, W.; Li, G.X.; Ciren, P. Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique. Remote Sens. 2021, 13, 4055. [Google Scholar] [CrossRef]
- Liu, T.T.; Hu, B.Y.; Xu, X.B.; Hong, Y.W.; Zhang, Y.R.; Wu, X.; Xu, L.L.; Li, M.R.; Chen, Y.T.; Chen, X.Q.; et al. Characteristics of PM2.5-bound secondary organic aerosol tracers in a coastal city in Southeastern China: Seasonal patterns and pollution identification. Atmos. Environ. 2020, 237, 117710. [Google Scholar]
- Lin, H.T.; Wang, M.; Duan, Y.S.; Fu, Q.Y.; Ji, W.H.; Cui, H.X.; Jin, D.; Lin, Y.F.; Hu, K. O-3 Sensitivity and Contributions of Different NMHC Sources in O-3 Formation at Urban and Suburban Sites in Shanghai. Atmosphere 2020, 11, 295. [Google Scholar] [CrossRef]
Episode-S | Episode-A | |||
---|---|---|---|---|
CRF | Number (N) | Correlation (R) | Number (N) | Correlation (R) |
<0.40 | 35 | 0.82 | 33 | 0.50 |
<0.45 | 35 | 0.82 | 33 | 0.56 |
<0.50 | 35 | 0.82 | 35 | 0.56 |
<0.55 | 35 | 0.83 | 35 | 0.56 |
<0.60 | 35 | 0.82 | 35 | 0.44 |
Episode-S | Episode-A | |||||
---|---|---|---|---|---|---|
Number | Correlation | p-Value | Number | Correlation | p-Value | |
Level 2 | 7 | 0.857 | 0.014 | 7 | 0.429 | 0.337 |
Grids | 9 | 0.867 | 0.002 | 9 | 0.433 | 0.244 |
10 km | 9 | 0.500 | 0.170 | 8 | 0.595 | 0.120 |
20 km | 9 | 0.750 | 0.020 | 9 | 0.633 | 0.067 |
30 km | 9 | 0.900 | 0.001 | 9 | 0.633 | 0.067 |
40 km | 9 | 0.783 | 0.013 | 9 | 0.500 | 0.170 |
50 km | 9 | 0.650 | 0.058 | 9 | 0.233 | 0.546 |
Level 3 | 9 | 0.750 | 0.020 | 7 | 0.857 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Mo, X.; Wang, H.; Li, J.; Gong, D.; Wang, D.; Li, Q.; Liu, Y.; Liu, X.; Wang, J.; et al. A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area. Remote Sens. 2023, 15, 3998. https://doi.org/10.3390/rs15163998
Zhao Y, Mo X, Wang H, Li J, Gong D, Wang D, Li Q, Liu Y, Liu X, Wang J, et al. A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area. Remote Sensing. 2023; 15(16):3998. https://doi.org/10.3390/rs15163998
Chicago/Turabian StyleZhao, Yiming, Xujun Mo, Hao Wang, Jiangyong Li, Daocheng Gong, Dakang Wang, Qinqin Li, Yunfeng Liu, Xiaoting Liu, Jinnian Wang, and et al. 2023. "A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area" Remote Sensing 15, no. 16: 3998. https://doi.org/10.3390/rs15163998
APA StyleZhao, Y., Mo, X., Wang, H., Li, J., Gong, D., Wang, D., Li, Q., Liu, Y., Liu, X., Wang, J., & Wang, B. (2023). A Comparative Study of Ground-Gridded and Satellite-Derived Formaldehyde during Ozone Episodes in the Chinese Greater Bay Area. Remote Sensing, 15(16), 3998. https://doi.org/10.3390/rs15163998