Glacier Change and Its Influencing Factors in the Northern Part of the Kunlun Mountains
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.1.1. Glacier Inventory Data
3.1.2. DEM Data
3.1.3. Landsat Remote Sensing Images
3.1.4. Meteorological Data
3.2. Methods
3.2.1. Methods of Calculating Ice Volume
3.2.2. Methods of Extracting Glacier Length
3.2.3. Method of Calculating Glacier Area Change
4. Results
4.1. The Glaciers in the Northern Part of the Kunlun Mountains in 2018
4.1.1. Glaciers in Areas of Different Sizes
4.1.2. Glaciers in Different River Basins
4.1.3. The Difference in Glacier Elevation and the Average Glacier Length
4.2. The Glacier Change in the Northern Part of the Kunlun Mountains from 1968 to 2018
4.2.1. Glacier Change in Areas of Different Sizes
4.2.2. The Glacier Change at Different Elevation Intervals
4.2.3. The Glacier Change in Different River Basins
4.3. The Influencing Factors of Glacier Change in the Northern Part of the Kunlun Mountains
4.3.1. Climate Change
4.3.2. Topographic Factors
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, D.H.; Zhou, B.T.; Xiao, C.D. Cryospheric change and its impact on climate in China. J. Meteorol. Res. 2014, 28, 732–1746. [Google Scholar] [CrossRef]
- Edwards, T.L.; Nowicki, S.; Marzeion, B.; Hock, R.; Goelzer, H.; Seroussi, H.; Jourdain, N.C.; Slater, D.A.; Turner, F.E.; Smith, C.J.; et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 2021, 593, 74–182. [Google Scholar] [CrossRef] [PubMed]
- Mauro, B.D. A darker cryosphere in a warming world. Nat. Clim. Change 2020, 10, 979–980. [Google Scholar] [CrossRef]
- Kikstra, J.S.; Nicholls, Z.R.; Smith, C.J.; Lewis, J.; Lamboll, R.D.; Byers, E.; Sandstad, M.; Meinshausen, M.; Gidden, M.J.; Rogelj, J.; et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: From emissions to global temperatures. Geosci. Model Dev. 2022, 15, 9075–9109. [Google Scholar] [CrossRef]
- Rasul, G.; Pasakhala, B.; Mishra, A.; Pant, S. Adaptation to mountain cryosphere change: Issues and challenges. Clim. Dev. 2020, 12, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.; McCarthy, M.; Dehecq, A.; Kneib, M.; Fugger, S.; Pellicciotti, F. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 2021, 12, 2868. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef]
- Sakai, A.; Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 2017, 7, 13717. [Google Scholar] [CrossRef] [Green Version]
- Sommer, C.; Malz, P.; Seehaus, T.C.; Lippl, S.; Zemp, M.; Braun, M.H. Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century. Nat. Commun. 2020, 11, 3209. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compogno, L.; Copland, L.; et al. Global glacier change in the 21st century: Every increase in temperature matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.; David, I.; Staal, A.; Abrams, J.F.; Winkelmann, R.; Sakschewski, B.; Loriani, S.; Fetzer, I.; Cornell, S.; Rockström, J.; et al. Exceeding 1.5 C global warming could trigger multiple climate tipping points. Science 2022, 377, eabn7950. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Gardner, A.S.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouvé, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2019, 12, 22–27. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L. Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sens. Environ. 2016, 187, 505–512. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Negi, H.S.; Kumar, K.; Shekhar, C.; Kanda, N. Quantifying mass balance of East-Karakoram glaciers using geodetic technique. Polar Sci. 2019, 19, 24–39. [Google Scholar] [CrossRef]
- Cao, B.; Guan, W.J.; Li, K.J.; Wen, Z.L.; Han, H.; Pan, B.T. Area and mass changes of glaciers in the West Kunlun Mountains based on the analysis of multi-temporal remote sensing images and DEMs from 1970 to 2018. Remote Sens. 2020, 12, 2632. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.L.; Wang, X.M.; Liu, S.Y.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.M.; Gao, X. Increase in occurrence of large glacier-related landslides in the high mountains of Asia. Sci. Rep. 2021, 11, 1635. [Google Scholar] [CrossRef]
- Lin, H.; Li, G.; Cuo, L.; Hooper, A.; Ye, Q.H. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Sci. Rep. 2017, 7, 6712. [Google Scholar] [CrossRef] [PubMed]
- Lhakpa, D.; Fan, Y.; Cai, Y. Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021. Remote Sens. 2022, 14, 6281. [Google Scholar] [CrossRef]
- Brahmbhatt, R.M.; Bahuguna, I.M.; Rathore, B.P.; Singh, S.K.; Rajawat, A.S.; Shah, R.D.; Kargel, J.S. Satellite monitoring of glaciers in the Karakoram from 1977 to 2013: An overall almost stable population of dynamic glaciers. Cryosphere Discuss. 2015, 9, 1555–1592. [Google Scholar]
- Azam, M.F.; Kargel, J.S.; Shea, J.M.; Nepal, S.; Haritashya, U.K.; Srivastsva, S.; Maussion, F.; Qazi, N.; Chevallier, P.; Dimri, A.P.; et al. Glaciohydrology of the himalaya-karakoram. Science 2021, 373, eabf3668. [Google Scholar] [CrossRef]
- Xu, Y.P.; Gao, Y.J. An analysis of water resource characteristics of the rivers in the northern slope of the Kunlun Mountains. Chin. Geogr. Sci. 1995, 5, 365–373. [Google Scholar] [CrossRef]
- Ye, Z.X.; Chen, S.F.; Zhang, Q.F.; Liu, Y.C.; Zhou, H.H. Ecological water demand of Taitema Lake in the lower reaches of the Tarim River and the Cherchen River. Remote Sens. 2022, 14, 832. [Google Scholar] [CrossRef]
- An, P.; Yu, L.P.; Wang, Y.X.; Miao, X.D.; Wang, C.S.; Lai, Z.P.; Shen, H.Y. Holocene incisions and flood activities of the Keriya River, NW margin of the Tibetan plateau. J. Asian Earth Sci. 2020, 191, 104224. [Google Scholar] [CrossRef]
- Li, B.F.; Zheng, J.L.; Shi, X.; Chen, Y.N. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China. Front. Earth Sci. 2020, 14, 568–577. [Google Scholar] [CrossRef]
- Ye, Z.X.; Chen, Y.N.; Zhang, Q.F.; Liu, Y.C.; Zhang, X.Q. Research on Sediment Discharge Variations and Driving Factors in the Tarim River Basin. Remote Sens. 2022, 14, 5848. [Google Scholar] [CrossRef]
- Alifu, H.; Hirabayashi, Y.; Johnson, B.A.; Vuillaume, J.F.; Kondoh, A.; Urai, M. Inventory of glaciers in the Shaksgam valley of the Chinese Karakoram mountains, 1970–2014. Remote Sens. 2018, 10, 1166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yao, X.J.; Liu, S.Y.; Zhang, D.H.; Xu, J.L. Variation of glacier length in the Altun Mountains during 1970–2016. J. Glaciol. Geocryol. 2021, 43, 49–60. [Google Scholar]
- Zhou, S.G.; Yao, X.J.; Zhang, D.H.; Zhang, Y.; Liu, S.Y.; Min, Y.F. Remote sensing monitoring of advancing and surging glaciers in the Tien Shan, 1990–2019. Remote Sens. 2021, 13, 1973. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.H.; Chen, J.M.; Liang, S.L.; Xu, B.; Shi, J.C.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Tak, S.; Keshari, A.K. Investigating mass balance of Parvati glacier in Himalaya using satellite imagery based model. Sci. Rep. 2020, 10, 12211. [Google Scholar] [CrossRef] [PubMed]
- Irwandi, H.; Rosid, M.S.; Mart, T. Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction. Sci. Rep. 2023, 13, 2542. [Google Scholar] [CrossRef] [PubMed]
- Nick, F.M.; Vieli, A.; Andersen, M.L.; Joughin, I.; Payne, A.; Edwards, T.L.; Pattyn, F.; Roderik, S.W. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 2013, 497, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.L.; Xu, N.N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Xie, W.H.; Yi, S.Z.; Leng, C.; Xia, D.F.; Li, M.L.; Zhong, Z.W.; Ye, J.F. The evaluation of IMERG and ERA5-Land daily precipitation over China with considering the influence of gauge data bias. Sci. Rep. 2022, 12, 8085. [Google Scholar] [CrossRef]
- Shannon, S.; Smith, R.; Wiltshire, A.; Payne, T.; Huss, M.; Betts, R.; Caesar, J.; Koutroulis, A.; Jones, D.; Harrison, S. Global glacier volume projections under high-end climate change scenarios. Cryosphere 2019, 13, 325–350. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Radić, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. Earth Surf. 2010, 115, F01010. [Google Scholar] [CrossRef]
- Grinsted, A. An estimate of global glacier volume. Cryosphere 2013, 7, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Sun, W.X.; Shen, Y.P.; Li, G. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J. Glaciol. 2003, 49, 117–124. [Google Scholar]
- Huston, A.; Siler, N.; Roe, G.H.; Pettit, E.; Steiger, N.J. Understanding drivers of glacier-length variability over the last millennium. Cryosphere 2021, 15, 1645–1662. [Google Scholar] [CrossRef]
- Yao, X.J.; Liu, S.Y.; Zhu, Y.; Gong, P.; An, L.N.; Li, X.F. Design and implementation of an automatic method for der iving glacier centerlines based on GIS. J. Glaciol. Geocryol. 2015, 37, 1563–1570. [Google Scholar]
- Zhang, Y.; Yao, X.J.; Zhou, S.G.; Zhang, D.H. Glacier changes in the Sanjiangyuan Nature Reserve of China during 2000–2018. J. Geogr. Sci. 2022, 32, 259–279. [Google Scholar] [CrossRef]
- Liu, S.Y.; Ding, Y.J.; Shangguan, D.H.; Zhang, Y.; Li, J.; Han, H.D.; Wang, J.; Xie, C.W. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann. Glaciol. 2006, 43, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, D.H.; Liu, S.Y.; Ding, Y.J.; Ding, L.F.; Xu, J.L.; Jing, L. Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Prog. Nat. Sci. 2009, 19, 727–732. [Google Scholar] [CrossRef]
- Yao, T.D.; Yao, Z.J. lmpacts of Glacial Reretreat on Runoff on Tibetan Plateau. Chin. J. Nat. 2010, 32, 4–8. [Google Scholar]
- Liu, S.Y.; Ding, Y.J.; Zhang, Y.; Shangguan, D.H.; Li, J.; Han, H.D.; Wang, J.; Xie, C.W. lmpact of the Glacial Change on Water Resources in the Tarim River Basin. Acta Geogr. Sin. 2006, 61, 482–490. [Google Scholar]
- Guan, W.J.; Cao, B.; Pan, B.T.; Chen, R.; Shi, M.H.; Li, K.J.; Zhao, X.R.; Sun, X.D. Updated Surge-Type Glacier Inventory in the West Kunlun Mountains, Tibetan Plateau, and Implications for Glacier Change. J. Geophys. Res. Earth Surf. 2021, 127, e2021JF006369. [Google Scholar] [CrossRef]
- Ke, L.H.; Ding, X.L.; Song, C.Q. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sens. Environ. 2015, 168, 13–23. [Google Scholar] [CrossRef]
Sensor | Path/Row | Date | Resolution | Band |
---|---|---|---|---|
Landsat TM | 147/36 | 28 August 1991 | 30 | 5, 4, 3 |
Landsat TM | 149/34 | 7 August 1990 | 30 | 5, 4, 3 |
Landsat TM | 148/35 | 20 September 1997 | 30 | 5, 4, 3 |
Landsat OLI | 147/36 | 10 September 2019 | 10 | 6, 5, 2, 4 |
Landsat OLI | 149/34 | 25 August 2020 | 10 | 6, 5, 2, 4 |
Landsat OLI | 148/35 | 21 October 2020 | 10 | 6, 5, 2, 4 |
Name and Code of Basin | Glacier Number | Glacier Area | Ice Volume | Glacier Average Length | ||||
---|---|---|---|---|---|---|---|---|
Name | Code | (%) | (km2) | (%) | (km3) | (%) | (km) | |
Qarqan River basin | 5Y62 | 959 | 10.34 | 757.90 | 6.44 | 59.86 | 5.12 | 1.14 |
Kriya River basin | 5Y63 | 977 | 10.54 | 1372.97 | 11.67 | 95.52 | 8.17 | 1.84 |
Hotan River basin | 5Y64 | 3890 | 41.95 | 4995.67 | 42.47 | 515.34 | 44.10 | 1.45 |
Yarkant River basin | 5Y65 | 3447 | 37.17 | 4636.17 | 39.41 | 497.81 | 42.60 | 1.57 |
Total | 5Y | 9273 | 11,762.72 | 1168.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Sun, M.; Wang, G.; Wang, W.; Yao, X.; Zhang, C. Glacier Change and Its Influencing Factors in the Northern Part of the Kunlun Mountains. Remote Sens. 2023, 15, 3986. https://doi.org/10.3390/rs15163986
Niu S, Sun M, Wang G, Wang W, Yao X, Zhang C. Glacier Change and Its Influencing Factors in the Northern Part of the Kunlun Mountains. Remote Sensing. 2023; 15(16):3986. https://doi.org/10.3390/rs15163986
Chicago/Turabian StyleNiu, Shuting, Meiping Sun, Guoyu Wang, Weisheng Wang, Xiaojun Yao, and Cong Zhang. 2023. "Glacier Change and Its Influencing Factors in the Northern Part of the Kunlun Mountains" Remote Sensing 15, no. 16: 3986. https://doi.org/10.3390/rs15163986
APA StyleNiu, S., Sun, M., Wang, G., Wang, W., Yao, X., & Zhang, C. (2023). Glacier Change and Its Influencing Factors in the Northern Part of the Kunlun Mountains. Remote Sensing, 15(16), 3986. https://doi.org/10.3390/rs15163986