Application of Deep Learning in Multitemporal Remote Sensing Image Classification
Abstract
:1. Introduction
2. Statistics from the Literature
3. Remote Sensing Data Sources
3.1. Remote Sensing Platforms and Sensors
3.2. Preparation of Multitemporal Remote Sensing Datasets
3.2.1. Atmospheric Correction
3.2.2. Removing Clouds and Noise
- Directly removing cloud-covered images or setting a threshold to remove cloudy images when a sufficient number of available images are present [56,57,58,59]. This method has a high calculation rate and is easy to implement. However, its shortcomings are that setting the threshold requires a lot of prior knowledge and human participation, and it is highly subjective.
- Filling in the cloudy portions of observations using linear time interpolation after cloud removal [5,60,61]. The implementation of this method first requires that the selected multiple images have a certain degree of temporal continuity. In addition, if there is an overlap of cloud areas in multiple periods of images, then this method cannot eliminate the impact of clouds.
- Replacing noisy images with higher quality images from a neighboring year on the same date [65,66]. Due to the fact that clouds often gather during the rainy season, it is difficult to ensure the quality of images near the same date in adjacent years. Moreover, when there is a significant change in the land cover type near the same date in adjacent years, it will seriously affect the classification results.
- Sending the cloud noise portion of the data to deep learning models for learning [66] or using it as noise limitation in the model [16,67,68]. Compared with traditional methods, deep learning methods have stronger robustness and can achieve higher accuracy. However, for deep learning-based methods, building models with strong generalization ability on time and space scales is still a challenge in cloud and cloud shadow detection methods.
3.2.3. Multisource Data Fusion
- Analyze the performance of different resolution data sources in deep learning models separately to test the robustness of the model.
- Fuse high-temporal-resolution and high-spatial-resolution images to obtain high-quality images and improve classification accuracy [55,71,72]. In addition, some other products (such as terrain and meteorological products) and small-scale, high-precision images from UAVs are gradually combined for use in this field [73,74,75].
3.2.4. Dimensionality Reduction and Feature Extraction
3.2.5. Input Format for Deep Learning Models
3.3. Sample Acquisition
3.3.1. Manual Collection of Samples
3.3.2. Open Sample Datasets
3.3.3. Semi-, Self-, and Unsupervised Learning
4. Overview and Testing of Deep Learning Models for Multitemporal Remote Sensing Classification
4.1. CNN-Based Network Models
4.1.1. One-Dimensional and Multidimensional Convolution
4.1.2. Other CNN Models
4.2. RNN-Based Network Models
4.3. Attention Mechanism
4.3.1. Attention Mechanism
- In a study on multitemporal message classification using CNNs combined with attention mechanisms, W. Zhang et al. [71] used channel attention modules to emphasize meaningful bands for better representation and classification of SITS. Channel attention modules and spectral–temporal feature learning were used. The former was used to learn band weights and focus the model on valuable band information. In the latter, dynamic aggregation blocks effectively extracted and fused features from the time dimension. Meanwhile, Seydi et al. [59] proposed a new AM framework for extracting deep information features; both spatial and channel attentions were embedded into a CNN with different attention network designs. For a CNN, channel attention is usually implemented after each convolution, but spatial attention is mainly added at the end of the network [154,155,156].
- Because it uses multiple LSTM layers and an attention mechanism, the AtLSTM model improves the distribution of temporal features learned from the LSTM layer by introducing an attention module that adjusts the contribution of hidden features by normalizing weights. The attention module consists of a fully connected layer with softmax activation that generates attention weights for each hidden feature produced by LSTM layers. The learned features outputted by the attention module are fed into a fully connected layer and softmax function to produce normalized prediction scores for potential target classes. The class with the highest score is selected as the predicted class. It aims to discover complex temporal representations and learn long-term correlations from multi-time satellite data and has been widely applied [61,64,101,130]. In addition, the time attention encoder (TAE) incorporates a self-attention mechanism. This concept emphasizes relationships between different positions in input sequences (here, time series) for computing sequence representations.
4.3.2. Transformer
4.4. Multiple Model Combinations
4.5. Typical Model Testing
4.5.1. Data Source
4.5.2. Experimental Settings
4.5.3. Test Result
5. Application
5.1. Agricultural Classification and Mapping
- Different classification systems lead to poor model portability. Depending on the monitoring range, the composition of crops also varies, and the adaptability of models decreases accordingly.
- Mapping rare crops. There are great differences in the spatial distribution of different crop types, especially crops with small planting areas and scattered crops. It is difficult to obtain higher accuracy due to sample and terrain factors.
5.2. Wetlands Extraction and Classification
5.3. Forest Monitoring and Mapping
5.4. Land Use and Land Cover (Multi-Thematic)
6. Discussion and Prospects
6.1. Adaptability between Deep Learning Models and Multitemporal Classification
6.2. Prospects for High-Resolution Image Applications
6.3. Large-Scale Monitoring and Model Generalization
7. Concluding Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Major Field (Subfield) | Model Category | Model Names (Best Model) | Data | Classes | Advantage | Weakness | Result (Comparative Model) | References |
---|---|---|---|---|---|---|---|---|
Sentinel | ||||||||
Agriculture (crop classification) | CNN | Geo-3D CNN+Geo-Conv1D | Sentinel-2 | 4 | Combines the strengths of two convolutional models and uses active learning to label samples | Complex distribution of land cover types can negatively impact the effectiveness of sample extraction and classification results | OA = 92.5% Accuracy improvement: 0.61%; 1.23% (Geo-Conv1D; Geo-3D CNN) | [95] |
Agriculture (crop classification) | CNN | 3D U-Net | Sentinel-1+Sentinel-2 | 13 | Fusion of optical and SAR imagery | Training based on multi-source data requires a substantial amount of time | OA = 94.1% Accuracy improvement: 15.4%; 38.4%; 9.4%; 29.8% (2D U-Net; SegNet; optical images; SAR images) | [68] |
Agriculture (crop classification) | CNN+RNN | Multi-stage convSTAR | Sentinel-2 | 48 | Enhances the classification accuracy of rare crop species | Application to different regions necessitates redefining the label hierarchy and imposes sample quantity requirements | ACC = 88% Accuracy improvement: 0.7%; 1.1% (convSTAR; multi-stage convGRU) | [130] |
Agriculture (crop classification) | Transformer+ANN | Updated dual-branch network | Sentinel-1+Sentinel-2 | 18 | The dual-branch model reduces complexity and effectively differentiates categories using contrastive learning | Only applicable in cases where both optical and SAR data are complete, as incomplete data may lead to suboptimal performance or even failure | OA = 93.60% Accuracy improvement: 0.66% (standard supervised learning) | [162] |
Agriculture (single crop mapping) | CNN+RNN | TFBS | Sentinel-1 | 5 | Strong spatiotemporal generalization capabilities | A certain degree of dependency on the samples | F-score = 0.8899 Accuracy surpasses that of LSTM, U-Net, and ConvLSTM | [93] |
Agriculture (single crop mapping) | CNN+RNN | Conv2D LSTM | Sentinel-1+Sentinel-2 | 4 | Based on the mapping of rice distribution, the classification and identification of different growth stages of rice were conducted | The limited availability of labels may pose challenges for generalizing the results | ACC = 76% Accuracy improvement: 1%; 17% (GRU; Conv2D) | [166] |
LULC (LULC classification) | CNN+RNN+AM | TWINNS | Sentinel-1+Sentinel-2 | 13; 8 | Fusion of optical and SAR imagery, and not affected by the issue of gradient vanishing | Need to incorporate considerations for multi-source scenarios | OA = 89.88%; 87.5% in different dataset Accuracy improvement: 6.71%; 1.02% (2ConvLSTM) | [60] |
LULC (LULC classification) | Transformer | SITS Formers | Sentinel-2 | 10 | Reduced sample pressure by using a self-supervised classification approach | Performing large-scale classification mapping is time-consuming | OA = 93.18%; 88.83% in different dataset Accuracy improvement: 2.64%; 3.3% (non-pretrained SITS formers) 7.31%; 7.37% (ConvRNN) | [58] |
Wetland (wetland classification) | CNN | U-Net | Sentinel-2 | 5 | High computational efficiency | Regional variations may lead to potential misclassification of high marshland areas | OA = 90% | [123] |
Forest (single tree species identification) | ANN | MLP | Sentinel-2 | 1 | Near absence of omission errors | OA is typically lower than logistic regression (LR) | OA = 91% Omission error rate = 2.8% | [63] |
Landsat | ||||||||
Agriculture (crop classification) | FNN | Seven layers of the DNN model | Landsat5, 7–8 | 2 | Capability to provide near-real-time, in-season crop maps | Pre-masking of non-target objects | OA = 97% | [90] |
Agriculture (crop classification) | RNN+AM | DeepCropMapping (DCM) | Landsat7–8 | 3 | High classification accuracy during the early stages of crop growth and demonstrates good spatial generalization | The quality of acquiring effective remote sensing time series depends on the quality of remote sensing imagery for specific regions and years | Average kappa = 85.8%; 82%in different regions Kappa improvement: 0.42%; 0.55% (Transformer) | [61] |
LULC (LULC classification) | CNN | 4D U-Net | Landsat8 | 15 | The number of samples has a minor impact, while the model demonstrates strong robustness | High-dimensional spatial computations are more time-consuming | ACC = 61.56% Accuracy improvement: 12.79%; 7% (3D-UNet; FCN+LSTM) | [121] |
Wetland (mapping of single wetland vegetation type) | AE | Stacked AutoEncoder (SAE) | Landsat5, 8 | 1 | Maximizing the reduction of cloud effects in coastal areas | Uncertainties exist when extrapolating from regional to large-scale contexts | OA = 96.22% | [87] |
RadarSat-2 | ||||||||
Agriculture (crop classification) | CNN | GDSSM-CNN | RadarSat-2 | 3 | Training performance is not limited by the quantity of samples | Insufficient consideration has been given to the long-term temporal variations in crop | ACC = 91.2% Accuracy improvement: 19.94%; 23.91% (GDSSM;1D-CNN) | [88] |
MODIS | ||||||||
Agriculture (single crop mapping) | CNN | 3D CNN | MOD13Q1 | 1 | Applicable for crop mapping in the absence of pixel-level samples | The pixels in mapping are influenced by positional errors | Basic agreement with the statistical data | [169] |
LULC (LULC classification) | CNN+RNN | HCS-ConvRNN | MCD43A4 | 4/5/11/3 | The application of a hierarchical classification approach enables a more detailed characterization of land types, revealing a wealth of spatial details | Accuracy of deeper layers is not satisfactory in large-scale settings | OA = 92.18%; 61.72%; 48.53%; 45.27% at different levels of land types Accuracy improvement: 12.79%; 7% (3D-UNet; FCN+LSTM) | [192] |
GF/Worldview/ZY | ||||||||
Agriculture (crop classification) | CNN+RNN | DCN–LSTM-based frameworks (DenseNet121-D1) | ZY-3 | 7 | Efficiently organizes features and supports the identification of crop rotation types | Expertise is required for agricultural field segmentation prior to classification | OA = 87.87% Accuracy improvement = 3.38% (GLCM-Based) | [131] |
LULC (single land cover extraction) | CNN | Mask R-CNN | GF-2+Worldview-3 | 1 | Both good timeliness and spatial generalization, without the need for prior knowledge | Limited applicability to large-scale and complex scenes | F-score = 0.9029 Accuracy surpasses that of machine learning models | [136] |
LULC (LULC classification) | CNN+AM | MSFCN | GF-1+ZY-3 | 6; 4 | Effectively harnesses the spatiotemporal dimensions of information | Spatio-temporal generalization has not been evaluated | Average OA = 83.94%; 97.46% in different dataset Accuracy improvement = 2.17%; 0.77% (U-Net+AM) 1.86; 0.78% (FGC) | [195] |
Forest (tree species classification) | CNN | Dual-uNet-Resnet | GF-2 | 10 | Enhancing classification accuracy using multi-level fusion for fine-grained tree species classification | Spatio-temporal generalization has not been evaluated | OA = 93.3% Accuracy improvement = 3.38%; 6.5% (UNet-Resnet; U-Net) | [127] |
UAV images | ||||||||
Agriculture (single crop mapping) | CNN+RNN+AM | ARCNN | UAV images | 14 | More accurate crop mapping, effectively harnesses the spatiotemporal dimensions of information | Spatio-temporal generalization has not been evaluated | OA = 92.8% | [39] |
LiDAR | ||||||||
LULC (LULC classification) | CNN+SVM | 3D CNN | Airborne LiDAR+Landsat 5 | 7 | Effectively distinguishing areas with high confusion to achieve high-precision land cover classification | A large sample dataset is required, and potential errors may arise during the acquisition and utilization of airborne LiDAR | OA = 92.57% Average accuracy improvement in different scenarios = 2.76% (2D CNN+SVM) | [41] |
References
- MohanRajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environ. Sci. Pollut. Res. 2020, 27, 29900–29926. [Google Scholar] [CrossRef] [PubMed]
- ESA. Towards a European AI4EO R&I Agenda. 2018. Available online: https://eo4society.esa.int/tag/enterprise/ (accessed on 23 June 2023).
- Gomez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS-J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Flamary, R.; Fauvel, M.; Mura, M.D.; Valero, S. Analysis of Multitemporal Classification Techniques for Forecasting Image Time Series. IEEE Geosci. Remote Sens. Lett. 2015, 12, 953–957. [Google Scholar] [CrossRef]
- Lyu, H.; Lu, H.; Mou, L.; Li, W.; Wright, J.; Li, X.; Li, X.; Zhu, X.X.; Wang, J.; Yu, L.; et al. Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. Remote Sens. 2018, 10, 471. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Liu, L.; Zhang, X.; Chen, X. Annual land-cover mapping based on multi-temporal cloud-contaminated landsat images. Int. J. Remote Sens. 2019, 40, 3855–3877. [Google Scholar] [CrossRef]
- Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; McNeil, B.E.; Warner, T.A.; Maxwell, A.E.; Dahle, G.A.; Eutsler, E.; Li, J.L. Discriminating tree species at different taxonomic levels using multi-temporal WorldView-3 imagery in Washington DC, USA. Remote Sens. Environ. 2020, 246, 111811. [Google Scholar] [CrossRef]
- Whelen, T.; Siqueira, P. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens. Lett. 2018, 9, 411–420. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, D.K.; Mishra, V.N.; Prasad, R. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 2015, 36, 1604–1617. [Google Scholar] [CrossRef]
- Shukla, G.; Garg, R.D.; Srivastava, H.S.; Garg, P.K. An effective implementation and assessment of a random forest classifier as a soil spatial predictive model. Int. J. Remote Sens. 2018, 39, 2637–2669. [Google Scholar] [CrossRef]
- Castro, J.B.; Feitosa, R.Q.; Happ, P.N. An hybrid recurrent convolutional neural network for crop type recognition based on multitemporal sar image sequences. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3824–3827. [Google Scholar]
- Russwurm, M.; Korner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders. ISPRS Int. J. Geo-Inf. 2018, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Russwurm, M.; Korner, M. Self-attention for raw optical Satellite Time Series Classification. ISPRS-J. Photogramm. Remote Sens. 2020, 169, 421–435. [Google Scholar] [CrossRef]
- Teixeira, I.; Morais, R.; Sousa, J.J.; Cunha, A. Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review. Agriculture 2023, 13, 965. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Datta, D.; Mallick, P.K.; Bhoi, A.K.; Ijaz, M.F.; Shafi, J.; Choi, J. Hyperspectral Image Classification: Potentials, Challenges, and Future Directions. Comput. Intell. Neurosci. 2022, 2022, 3854635. [Google Scholar] [CrossRef]
- Griffiths, D.; Boehm, J. A Review on Deep Learning Techniques for 3D Sensed Data Classification. Remote Sens. 2019, 11, 1499. [Google Scholar] [CrossRef] [Green Version]
- Pashaei, M.; Kamangir, H.; Starek, M.J.; Tissot, P. Review and Evaluation of Deep Learning Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study over a Wetland. Remote Sens. 2020, 12, 959. [Google Scholar] [CrossRef] [Green Version]
- Zang, N.; Cao, Y.; Wang, Y.B.; Huang, B.; Zhang, L.Q.; Mathiopoulos, P.T. Land-Use Mapping for High-Spatial Resolution Remote Sensing Image Via Deep Learning: A Review. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 5372–5391. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS-J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Kuras, A.; Brell, M.; Rizzi, J.; Burud, I. Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine Learning and Neural-Network-Based Classification: A Review. Remote Sens. 2021, 13, 3393. [Google Scholar] [CrossRef]
- Kaul, A.; Raina, S. Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review. Concurr. Comput.-Pract. Exp. 2022, 34, e6945. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef] [PubMed]
- Adegun, A.A.; Viriri, S.; Tapamo, J.R. Review of deep learning methods for remote sensing satellite images classification: Experimental survey and comparative analysis. J. Big Data 2023, 10, 93. [Google Scholar] [CrossRef]
- Machichi, M.A.; Mansouri, L.E.; Imani, Y.; Bourja, O.; Lahlou, O.; Zennayi, Y.; Bourzeix, F.; Houmma, I.H.; Hadria, R. Crop mapping using supervised machine learning and deep learning: A systematic literature review. Int. J. Remote Sens. 2023, 44, 2717–2753. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Turkoglu, M.O.; D’Aronco, S.; Perich, G.; Liebisch, F.; Streit, C.; Schindler, K.; Wegner, J.D. Crop mapping from image time series: Deep learning with multi-scale label hierarchies. Remote Sens. Environ. 2021, 264, 112603. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Z.; Dong, Y.; Du, P.; Li, Y.; Lian, Y.; Cui, T. Analysis of Extracting Prior BRDF from MODIS BRDF Data. Remote Sens. 2016, 8, 1004. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.G.; Yan, W.Z.; Oates, T. Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585. [Google Scholar]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep Learning with Unsupervised Data Labeling for Weed Detection in Line Crops in UAV Images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef] [Green Version]
- Valdivieso-Ros, C.; Alonso-Sarria, F.; Gomariz-Castillo, F. Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms. Remote Sens. 2023, 15, 312. [Google Scholar] [CrossRef]
- Yang, Q.; Shi, L.S.; Han, J.Y.; Yu, J.; Huang, K. A near real-time deep learning approach for detecting rice phenology based on UAV images. Agric. For. Meteorol. 2020, 287, 107938. [Google Scholar] [CrossRef]
- Disney, M.I.; Vicari, M.B.; Burt, A.; Calders, K.; Lewis, S.L.; Raumonen, P.; Wilkes, P. Weighing trees with lasers: Advances, challenges and opportunities. Interface Focus. 2018, 8, 20170048. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.B.; Liu, S.J.; Yu, J.; Li, H. A High-Resolution Spatial and Time-Series Labeled Unmanned Aerial Vehicle Image Dataset for Middle-Season Rice. ISPRS Int. J. Geo-Inf. 2020, 9, 728. [Google Scholar] [CrossRef]
- Feng, Q.L.; Yang, J.Y.; Liu, Y.M.; Ou, C.; Zhu, D.H.; Niu, B.W.; Liu, J.T.; Li, B.G. Multi-Temporal Unmanned Aerial Vehicle Remote Sensing for Vegetable Mapping Using an Attention-Based Recurrent Convolutional Neural Network. Remote Sens. 2020, 12, 1668. [Google Scholar] [CrossRef]
- Vilar, P.; Morais, T.G.; Rodrigues, N.R.; Gama, I.; Monteiro, M.L.; Domingos, T.; Teixeira, R. Object-Based Classification Approaches for Multitemporal Identification and Monitoring of Pastures in Agroforestry Regions using Multispectral Unmanned Aerial Vehicle Products. Remote Sens. 2020, 12, 814. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.W.; Guan, K.Y.; Casler, N.; Peng, B.; Wang, S.W. A 3D convolutional neural network method for land cover classification using LiDAR and multi-temporal Landsat imagery. ISPRS-J. Photogramm. Remote Sens. 2018, 144, 423–434. [Google Scholar] [CrossRef]
- Han, T.; Sanchez-Azofeifa, G.A. A Deep Learning Time Series Approach for Leaf and Wood Classification from Terrestrial LiDAR Point Clouds. Remote Sens. 2022, 14, 3157. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yang, P.X.; Zhou, M.Z. Multireceiver SAS Imagery with Generalized PCA. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1502205. [Google Scholar] [CrossRef]
- Choi, H.M.; Yang, H.S.; Seong, W.J. Compressive Underwater Sonar Imaging with Synthetic Aperture Processing. Remote Sens. 2021, 13, 1924. [Google Scholar] [CrossRef]
- Yang, D.; Wang, C.; Cheng, C.S.; Pan, G.; Zhang, F.H. Semantic Segmentation of Side-Scan Sonar Images with Few Samples. Electronics 2022, 11, 3002. [Google Scholar] [CrossRef]
- Neupane, D.; Seok, J. A Review on Deep Learning-Based Approaches for Automatic Sonar Target Recognition. Electronics 2020, 9, 1972. [Google Scholar] [CrossRef]
- Cheng, J. Underwater Target Recognition Technology Base on Deep Learning. Master’s Thesis, China Ship Research and Development Academy, Beijing, China, 2018. [Google Scholar]
- Perry, S.W.; Ling, G. A recurrent neural network for detecting objects in sequences of sector-scan sonar images. IEEE J. Ocean. Eng. 2004, 29, 857–871. [Google Scholar] [CrossRef]
- Sledge, I.J.; Emigh, M.S.; King, J.L.; Woods, D.L.; Cobb, J.T.; Principe, J.C. Target Detection and Segmentation in Circular-Scan Synthetic Aperture Sonar Images Using Semisupervised Convolutional Encoder-Decoders. IEEE J. Ocean. Eng. 2022, 47, 1099–1128. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Sola, I.; Garcia-Martin, A.; Sandonis-Pozo, L.; Alvarez-Mozos, J.; Perez-Cabello, F.; Gonzalez-Audicana, M.; Lloveria, R.M. Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 63–76. [Google Scholar] [CrossRef]
- Pancorbo, J.L.; Lamb, B.T.; Quemada, M.; Hively, W.D.; Gonzalez-Fernandez, I.; Molina, I. Sentinel-2 and WorldView-3 atmospheric correction and signal normalization based on ground-truth spectroradiometric measurements. ISPRS-J. Photogramm. Remote Sens. 2021, 173, 166–180. [Google Scholar] [CrossRef]
- Moravec, D.; Komarek, J.; Medina, S.; Molina, I. Effect of Atmospheric Corrections on NDVI: Intercomparability of Landsat 8, Sentinel-2, and UAV Sensors. Remote Sens. 2021, 13, 3550. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Shen, J.; Tao, C.; Qi, J.; Wang, H. Semi-Supervised Convolutional Long Short-Term Memory Neural Networks for Time Series Land Cover Classification. Remote Sens. 2021, 13, 3504. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Lin, L. Self-Supervised Pretraining of Transformers for Satellite Image Time Series Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 474–487. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, L.; Liu, Q.S.; Hang, R.L.; Zhou, Z.G. SITS-Former: A pre-trained spatio-spectral-temporal representation model for Sentinel-2 time series classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102651. [Google Scholar] [CrossRef]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series Sentinel-2 Imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS-J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Xu, J.F.; Zhu, Y.; Zhong, R.H.; Lin, Z.X.; Xu, J.L.; Jiang, H.; Huang, J.F.; Li, H.F.; Lin, T. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Hosseiny, B.; Mahdianpari, M.; Brisco, B.; Mohammadimanesh, F.; Salehi, B. WetNet: A Spatial-Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4406014. [Google Scholar] [CrossRef]
- D’Amico, G.; Francini, S.; Giannetti, F.; Vangi, E.; Travaglini, D.; Chianucci, F.; Mattioli, W.; Grotti, M.; Puletti, N.; Corona, P.; et al. A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. Gisci. Remote Sens. 2021, 58, 1352–1368. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhao, W.Z.; Chen, S.; Ye, T. Mapping Crop Rotation by Using Deeply Synergistic Optical and SAR Time Series. Remote Sens. 2021, 13, 4160. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Ren, G.B.; Wang, J.P.; Wang, J.B.; Hu, Y.B.; Lin, Z.Y.; Li, W.; Zhao, Y.J.; Li, S.B.; Wang, N. Monitoring the Invasive Plant Spartina alterniflora in Jiangsu Coastal Wetland Using MRCNN and Long-Time Series Landsat Data. Remote Sens. 2022, 14, 2630. [Google Scholar] [CrossRef]
- Xi, Y.; Ren, C.Y.; Tian, Q.J.; Ren, Y.X.; Dong, X.Y.; Zhang, Z.C. Exploitation of Time Series Sentinel-2 Data and Different Machine Learning Algorithms for Detailed Tree Species Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 7589–7603. [Google Scholar] [CrossRef]
- Sharma, A.; Liu, X.W.; Yang, X.J. Land cover classification from multi-temporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks. Neural Netw. 2018, 105, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrian, J.; Sagan, V.; Maimaitijiang, M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS-J. Photogramm. Remote Sens. 2021, 175, 215–235. [Google Scholar] [CrossRef]
- Tiwari, A.; Narayan, A.B.; Dikshit, O. Deep learning networks for selection of measurement pixels in multi-temporal SAR interferometric processing. ISPRS-J. Photogramm. Remote Sens. 2020, 166, 169–182. [Google Scholar] [CrossRef]
- Jin, H.R.; Mountrakis, G. Fusion of optical, radar and waveform LiDAR observations for land cover classification. ISPRS-J. Photogramm. Remote Sens. 2022, 187, 171–190. [Google Scholar] [CrossRef]
- Zhang, W.; Du, P.J.; Fu, P.J.; Zhang, P.; Tang, P.F.; Zheng, H.R.; Meng, Y.P.; Li, E.Z. Attention-Aware Dynamic Self-Aggregation Network for Satellite Image Time Series Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4406517. [Google Scholar] [CrossRef]
- Ren, T.W.; Liu, Z.; Zhang, L.; Liu, D.Y.; Xi, X.J.; Kang, Y.H.; Zhao, Y.Y.; Zhang, C.; Li, S.M.; Zhang, X.D. Early Identification of Seed Maize and Common Maize Production Fields Using Sentinel-2 Images. Remote Sens. 2020, 12, 2140. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, X.; Zhang, X.; Wu, D.H.; Du, X.Z. Long Time Series Land Cover Classification in China from 1982 to 2015 Based on Bi-LSTM Deep Learning. Remote Sens. 2019, 11, 1639. [Google Scholar] [CrossRef] [Green Version]
- Reuss, F.; Greimeister-Pfeil, I.; Vreugdenhil, M.; Wagner, W. Comparison of Long Short-Term Memory Networks and Random Forest for Sentinel-1 Time Series Based Large Scale Crop Classification. Remote Sens. 2021, 13, 5000. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Luo, J.C.; Feng, L.; Yang, Y.P.; Chen, Y.H.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. Gisci. Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Hakkenberg, C.R.; Dannenberg, M.P.; Song, C.; Ensor, K.B. Characterizing multi-decadal, annual land cover change dynamics in Houston, TX based on automated classification of Landsat imagery. Int. J. Remote Sens. 2019, 40, 693–718. [Google Scholar] [CrossRef]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, J.H.; Xun, L.; Wang, J.W.; Wu, Z.J.; Henchiri, M.; Zhang, S.C.; Zhang, S.; Bai, Y.; Yang, S.S.; et al. Evaluating the Effectiveness of Machine Learning and Deep Learning Models Combined Time-Series Satellite Data for Multiple Crop Types Classification over a Large-Scale Region. Remote Sens. 2022, 14, 2341. [Google Scholar] [CrossRef]
- Zhang, H.G.; He, B.B.; Xing, J. Mapping Paddy Rice in Complex Landscapes with Landsat Time Series Data and Superpixel-Based Deep Learning Method. Remote Sens. 2022, 14, 3721. [Google Scholar] [CrossRef]
- Paul, S.; Kumari, M.; Murthy, C.S.; Kumar, D.N. Generating pre-harvest crop maps by applying convolutional neural network on multi-temporal Sentinel-1 data. Int. J. Remote Sens. 2022, 43, 6078–6101. [Google Scholar] [CrossRef]
- Teimouri, N.; Dyrmann, M.; Jorgensen, R.N. A Novel Spatio-Temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images. Remote Sens. 2019, 11, 990. [Google Scholar] [CrossRef] [Green Version]
- El Mendili, L.; Puissant, A.; Chougrad, M.; Sebari, I. Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images. Remote Sens. 2020, 12, 423. [Google Scholar] [CrossRef] [Green Version]
- Song, A.; Choi, J.; Han, Y.; Kim, Y. Change Detection in Hyperspectral Images Using Recurrent 3D Fully Convolutional Networks. Remote Sens. 2018, 10, 1827. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; Ienco, D.; El Hajj, M.; Zribi, M.; Belhouchette, H.; Jose Escorihuela, M.; Demarez, V. Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sens. 2019, 11, 1836. [Google Scholar] [CrossRef] [Green Version]
- Sothe, C.; De Almeida, C.M.; Schimalski, M.B.; La Rosa, L.; Castro, J.; Feitosa, R.Q.; Dalponte, M.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; et al. Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. Gisci. Remote Sens. 2020, 57, 369–394. [Google Scholar] [CrossRef]
- Tian, J.Y.; Wang, L.; Yin, D.M.; Li, X.J.; Diao, C.Y.; Gong, H.L.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Li, H.P.; Lu, J.; Tian, G.X.; Yang, H.J.; Zhao, J.H.; Li, N. Crop Classification Based on GDSSM-CNN Using Multi-Temporal RADARSAT-2 SAR with Limited Labeled Data. Remote Sens. 2022, 14, 3889. [Google Scholar] [CrossRef]
- Russwurm, M.; Courty, N.; Emonet, R.; Lefevre, S.; Tuia, D.; Tavenard, R. End-to-end learned early classification of time series for in-season crop type mapping. ISPRS-J. Photogramm. Remote Sens. 2023, 196, 445–456. [Google Scholar] [CrossRef]
- Cai, Y.P.; Guan, K.Y.; Peng, J.; Wang, S.W.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Ji, S.P.; Zhang, C.; Xu, A.J.; Shi, Y.; Duan, Y.L. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Masolele, R.N.; De Sy, V.; Herold, M.; Marcos, D.; Verbesselt, J.; Gieseke, F.; Mullissa, A.G.; Martius, C. Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series. Remote Sens. Environ. 2021, 264, 112600. [Google Scholar] [CrossRef]
- Yang, L.B.; Huang, R.; Huang, J.F.; Lin, T.; Wang, L.M.; Mijiti, R.; Wei, P.L.; Tang, C.; Shao, J.; Li, Q.Z.; et al. Semantic Segmentation Based on Temporal Features: Learning of Temporal-Spatial Information from Time-Series SAR Images for Paddy Rice Mapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4403216. [Google Scholar] [CrossRef]
- Martinez, J.; La Rosa, L.; Feitosa, R.Q.; Sanches, I.D.; Happ, P.N. Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences. ISPRS-J. Photogramm. Remote Sens. 2021, 171, 188–201. [Google Scholar] [CrossRef]
- Yang, S.T.; Gu, L.J.; Li, X.F.; Gao, F.; Jiang, T. Fully Automated Classification Method for Crops Based on Spatiotemporal Deep-Learning Fusion Technology. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5405016. [Google Scholar] [CrossRef]
- Russwurm, M.; Korner, M. Temporal Vegetation Modelling using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-Spectral Satellite Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1496–1504. [Google Scholar] [CrossRef]
- Chen, B.L.; Zheng, H.W.; Wang, L.L.; Hellwich, O.; Chen, C.B.; Yang, L.; Liu, T.; Luo, G.P.; Bao, A.M.; Chen, X. A joint learning Im-BiLSTM model for incomplete time-series Sentinel-2A data imputation and crop classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102762. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Wei, P.L.; Chai, D.F.; Lin, T.; Tang, C.; Du, M.Q.; Huang, J.F. Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model. ISPRS-J. Photogramm. Remote Sens. 2021, 174, 198–214. [Google Scholar] [CrossRef]
- Dou, P.; Shen, H.F.; Li, Z.W.; Guan, X.B. Time series remote sensing image classification framework using combination of deep learning and multiple classifiers system. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102477. [Google Scholar] [CrossRef]
- Xu, J.F.; Yang, J.; Xiong, X.G.; Li, H.F.; Huang, J.F.; Ting, K.C.; Ying, Y.B.; Lin, T. Towards interpreting multi-temporal deep learning models in crop mapping. Remote Sens. Environ. 2021, 264, 112599. [Google Scholar] [CrossRef]
- Song, X.P.; Potapov, P.V.; Krylov, A.; King, L.; Di Bella, C.M.; Hudson, A.; Khan, A.; Adusei, B.; Stehman, S.V.; Hansen, M.C. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 2017, 190, 383–395. [Google Scholar] [CrossRef]
- Zhuang, F.Z.; Qi, Z.Y.; Duan, K.Y.; Xi, D.B.; Zhu, Y.C.; Zhu, H.S.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Osco, L.P.; Furuya, D.; Furuya, M.; Correa, D.V.; Goncalvez, W.N.; Junior, J.M.; Borges, M.; Blassioli-Moraes, M.C.; Michereff, M.; Aquino, M.; et al. An impact analysis of pre-processing techniques in spectroscopy data to classify insect-damaged in soybean plants with machine and deep learning methods. Infrared Phys. Technol. 2022, 123, 104203. [Google Scholar] [CrossRef]
- Wang, Y.; Albrecht, C.M.; Braham, N.; Mou, L.C.; Zhu, X.X. Self-Supervised Learning in Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2022, 10, 213–247. [Google Scholar] [CrossRef]
- Li, J.T.; Shen, Y.L.; Yang, C. An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images. Remote Sens. 2021, 13, 65. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, X.N.; Wu, L. Method for Mapping Rice Fields in Complex Landscape Areas Based on Pre-Trained Convolutional Neural Network from HJ-1 A/B Data. ISPRS Int. J. Geo-Inf. 2018, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Berg, P.; Pham, M.T.; Courty, N. Self-Supervised Learning for Scene Classification in Remote Sensing: Current State of the Art and Perspectives. Remote Sens. 2022, 14, 3995. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.H.; Wang, J.F.; Xie, Q.H.; Al Baz, A.; Huang, X.D.; Shang, J.L.; He, Y.J. Synergistic Use of Multi-Temporal RADARSAT-2 and VEN mu S Data for Crop Classification Based on 1D Convolutional Neural Network. Remote Sens. 2020, 12, 832. [Google Scholar] [CrossRef] [Green Version]
- Cecili, G.; De Fioravante, P.; Dichicco, P.; Congedo, L.; Marchetti, M.; Munafo, M. Land Cover Mapping with Convolutional Neural Networks Using Sentinel-2 Images: Case Study of Rome. Land 2023, 12, 879. [Google Scholar] [CrossRef]
- Taylor, S.D.; Browning, D.M. Classification of Daily Crop Phenology in PhenoCams Using Deep Learning and Hidden Markov Models. Remote Sens. 2022, 14, 286. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Li, Z.Q.; Chen, S.B.; Meng, X.Y.; Zhu, R.F.; Lu, J.Y.; Cao, L.S.; Lu, P. Full Convolution Neural Network Combined with Contextual Feature Representation for Cropland Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 2157. [Google Scholar] [CrossRef]
- La Rosa, L.; Feitosa, R.Q.; Happ, P.N.; Sanches, I.D.; Da Costa, G. Combining Deep Learning and Prior Knowledge for Crop Mapping in Tropical Regions from Multitemporal SAR Image Sequences. Remote Sens. 2019, 11, 2029. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Z.; Zhang, D.J.; Wu, Y.Q.; Chen, Y.L.; Yan, X.H. A Context Feature Enhancement Network for Building Extraction from High-Resolution Remote Sensing Imagery. Remote Sens. 2022, 14, 2276. [Google Scholar] [CrossRef]
- Pang, J.T.; Zhang, R.; Yu, B.; Liao, M.J.; Lv, J.C.; Xie, L.X.; Li, S.; Zhan, J.Y. Pixel-level rice planting information monitoring in Fujin City based on time-series SAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102551. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Giannopoulos, M.; Tsagkatakis, G.; Tsakalides, P. 4D U-Nets for Multi-Temporal Remote Sensing Data Classification. Remote Sens. 2022, 14, 634. [Google Scholar] [CrossRef]
- Wei, P.L.; Chai, D.F.; Huang, R.; Peng, D.L.; Lin, T.; Sha, J.M.; Sun, W.W.; Huang, J.F. Rice mapping based on Sentinel-1 images using the coupling of prior knowledge and deep semantic segmentation network: A case study in Northeast China from 2019 to 2021. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102948. [Google Scholar] [CrossRef]
- Li, H.X.; Wang, C.Z.; Cui, Y.X.; Hodgson, M. Mapping salt marsh along coastal South Carolina using U-Net. ISPRS-J. Photogramm. Remote Sens. 2021, 179, 121–132. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Xiao, X.M.; Qin, Y.W.; Qiao, Z.; Long, S.Q.; Tang, X.Z.; Liu, L. Annual Maps of Built-Up Land in Guangdong from 1991 to 2020 Based on Landsat Images, Phenology, Deep Learning Algorithms, and Google Earth Engine. Remote Sens. 2022, 14, 3562. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.Y.; Chen, E.X.; Zhang, X.; Zhao, L.; Xu, E.E.; Hou, Y.A.; Liu, L.Z. A Deep Fusion uNet for Mapping Forests at Tree Species Levels with Multi-Temporal High Spatial Resolution Satellite Imagery. Remote Sens. 2021, 13, 3613. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef] [Green Version]
- Arun, P.V.; Karnieli, A. Deep Learning-Based Phenological Event Modeling for Classification of Crops. Remote Sens. 2021, 13, 2477. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, W.Z.; Yuan, Z.L.; Chen, J.G. Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network. Remote Sens. 2020, 12, 2493. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Luo, J.C.; Feng, L.; Zhou, X.C. DCN-Based Spatial Features for Improving Parcel-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data. Remote Sens. 2019, 11, 1619. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; Feng, J. Dual path networks. Adv. Neural Inf. Process. Syst. 2017, 30, 1–9. [Google Scholar]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Li, X.C.; Tian, J.Y.; Li, X.J.; Wang, L.; Gong, H.L.; Shi, C.; Nie, S.; Zhu, L.; Chen, B.B.; Pan, Y.; et al. Developing a sub-meter phenological spectral feature for mapping poplars and willows in urban environment. ISPRS-J. Photogramm. Remote Sens. 2022, 193, 77–89. [Google Scholar] [CrossRef]
- Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Song, S.R.; Liu, J.H.; Liu, Y.; Feng, G.Q.; Han, H.; Yao, Y.; Du, M.Y. Intelligent Object Recognition of Urban Water Bodies Based on Deep Learning for Multi-Source and Multi-Temporal High Spatial Resolution Remote Sensing Imagery. Sensors 2020, 20, 397. [Google Scholar] [CrossRef] [Green Version]
- Mehra, A.; Jain, N.; Srivastava, H.S. A novel approach to use semantic segmentation based deep learning networks to classify multi-temporal SAR data. Geocarto Int. 2022, 37, 163–178. [Google Scholar] [CrossRef]
- Zhao, X.M.; Hong, D.F.; Gao, L.R.; Zhang, B.; Chanussot, J. Transferable Deep Learning from Time Series of Landsat Data for National Land-Cover Mapping with Noisy Labels: A Case Study of China. Remote Sens. 2021, 13, 4194. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar]
- Connor, J.T.; Martin, R.D.; Atlas, L.E. Recurrent Neural Networks and Robust Time-Series Prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ndikumana, E.; Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.H.; Di, L.P.; Fang, H. Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. Int. J. Remote Sens. 2019, 40, 593–614. [Google Scholar] [CrossRef]
- Zhao, H.W.; Duan, S.B.; Liu, J.; Sun, L.; Reymondin, L. Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information. Remote Sens. 2021, 13, 2790. [Google Scholar] [CrossRef]
- Zhao, H.W.; Chen, Z.X.; Jiang, H.; Jing, W.L.; Sun, L.; Feng, M. Evaluation of Three Deep Learning Models for Early Crop Classification Using Sentinel-1A Imagery Time Series-A Case Study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef] [Green Version]
- Sreedhar, R.; Varshney, A.; Dhanya, M. Sugarcane crop classification using time series analysis of optical and SAR sentinel images: A deep learning approach. Remote Sens. Lett. 2022, 13, 812–821. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991. [Google Scholar]
- Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.T.; Jo, J. Monitoring agriculture areas with satellite images and deep learning. Appl. Soft. Comput. 2020, 95, 106565. [Google Scholar] [CrossRef]
- Lin, Z.X.; Zhong, R.H.; Xiong, X.G.; Guo, C.Q.; Xu, J.F.; Zhu, Y.; Xu, J.L.; Ying, Y.B.; Ting, K.C.; Huang, J.F.; et al. Large-Scale Rice Mapping Using Multi-Task Spatiotemporal Deep Learning and Sentinel-1 SAR Time Series. Remote Sens. 2022, 14, 699. [Google Scholar] [CrossRef]
- de Castro, H.C.; de Carvalho, O.A.; de Carvalho, O.; de Bem, P.P.; de Moura, R.D.; de Albuquerque, A.O.; Silva, C.R.; Ferreira, P.; Guimaraes, R.F.; Gomes, R. Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Valente, J.; van der Voort, M.; Tekinerdogan, B. Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sens. 2021, 13, 2965. [Google Scholar] [CrossRef]
- Townshend, J.; Justice, C.O. Analysis of the Dynamics of African Vegetation Using the Normalized Difference Vegetation Index. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Muller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII; Bruzzone, L., Bovolo, F., Eds.; SPIE: Bellingham, DC, USA, 2017; Volume 10427. [Google Scholar] [CrossRef] [Green Version]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Chen, Y.S.; Wang, Y.; Gu, Y.F.; He, X.; Ghamisi, P.; Jia, X.P. Deep Learning Ensemble for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1882–1897. [Google Scholar] [CrossRef]
- Jia, F.; Li, S.H.; Zuo, H.; Shen, J.J. Deep Neural Network Ensemble for the Intelligent Fault Diagnosis of Machines Under Imbalanced Data. IEEE Access 2020, 8, 120974–120982. [Google Scholar] [CrossRef]
- Guo, Z.W.; Qi, W.W.; Huang, Y.B.; Zhao, J.H.; Yang, H.J.; Koo, V.C.; Li, N. Identification of Crop Type Based on C-AENN Using Time Series Sentinel-1A SAR Data. Remote Sens. 2022, 14, 1379. [Google Scholar] [CrossRef]
- Awad, M.M.; Lauteri, M. Self-Organizing Deep Learning (SO-UNet)-A Novel Framework to Classify Urban and Peri-Urban Forests. Sustainability 2021, 13, 5548. [Google Scholar] [CrossRef]
- Censi, A.M.; Ienco, D.; Gbodjo, Y.; Pensa, R.G.; Interdonato, R.; Gaetano, R. Attentive Spatial Temporal Graph CNN for Land Cover Mapping from Multi Temporal Remote Sensing Data. IEEE Access 2021, 9, 23070–23082. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, L.; Zhou, Z.G.; Jiang, H.J.; Liu, Q.S. Bridging optical and SAR satellite image time series via contrastive feature extraction for crop classification. ISPRS-J. Photogramm. Remote Sens. 2023, 195, 222–232. [Google Scholar] [CrossRef]
- Walter, A.; Liebisch, F.; Hund, A. Plant phenotyping: From bean weighing to image analysis. Plant Methods 2015, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Anderegg, J.; Yu, K.; Aasen, H.; Walter, A.; Liebisch, F.; Hund, A. Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm. Front. Plant Sci. 2020, 10, 1749. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Y.; Bai, Y.Q.; Li, G.Q.; Yang, X.; Huang, J.X.; Chen, Z.C. An Adaptive Feature Fusion Network with Superpixel Optimization for Crop Classification Using Sentinel-2 Imagery. Remote Sens. 2023, 15, 1990. [Google Scholar] [CrossRef]
- Thorp, K.R.; Drajat, D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Jo, H.W.; Lee, S.; Park, E.; Lim, C.H.; Song, C.; Lee, H.; Ko, Y.; Cha, S.; Yoon, H.; Lee, W.K. Deep Learning Applications on Multitemporal SAR (Sentinel-1) Image Classification Using Confined Labeled Data: The Case of Detecting Rice Paddy in South Korea. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7589–7601. [Google Scholar] [CrossRef]
- Wang, S.Y.; Xu, Z.G.; Zhang, C.M.; Zhang, J.H.; Mu, Z.S.; Zhao, T.Y.; Wang, Y.Y.; Gao, S.; Yin, H.; Zhang, Z.Y. Improved Winter Wheat Spatial Distribution Extraction Using A Convolutional Neural Network and Partly Connected Conditional Random Field. Remote Sens. 2020, 12, 821. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.H.; Hu, L.; Zhou, H.; Tao, X. Deep learning based winter wheat mapping using statistical data as ground references in Kansas and northern Texas, US. Remote Sens. Environ. 2019, 233, 111411. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. CaneSat dataset to leverage convolutional neural networks for sugarcane classification from Sentinel-2. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3343–3355. [Google Scholar] [CrossRef]
- Lei, L.; Wang, X.Y.; Zhong, Y.F.; Zhao, H.W.; Hu, X.; Luo, C. DOCC: Deep one-class crop classification via positive and unlabeled learning for multi-modal satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102598. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Clinton, N.E.; Wang, L.; Fu, W.; Qi, S.H.; Liu, Y. Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Remote Sens. Environ. 2012, 127, 357–369. [Google Scholar] [CrossRef]
- Xu, P.P.; Niu, Z.G.; Tang, P. Comparison and assessment of NDVI time series for seasonal wetland classification. Int. J. Digit. Earth 2018, 11, 1103–1131. [Google Scholar] [CrossRef]
- Gallant, A.L. The Challenges of Remote Monitoring of Wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.H.; Wang, Z.M.; Du, B.J.; Li, L.; Tian, Y.L.; Jia, M.M.; Zeng, Y.; Song, K.S.; Jiang, M.; Wang, Y.Q. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS-J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, N.; Li, Y.F.; Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 2022, 269, 112799. [Google Scholar] [CrossRef]
- Liu, G.Y.; Liu, B.; Zheng, G.; Li, X.F. Environment Monitoring of Shanghai Nanhui Intertidal Zone With Dual-Polarimetric SAR Data Based on Deep Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4208918. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y. Spatial distribution of an invasive plant Spartina alterniflora and its potential as biofuels in China. Ecol. Eng. 2013, 52, 175–181. [Google Scholar] [CrossRef]
- O’Donnell, J.P.R.; Schalles, J.F. Examination of Abiotic Drivers and Their Influence on Spartina alterniflora Biomass over a Twenty-Eight Year Period Using Landsat 5 TM Satellite Imagery of the Central Georgia Coast. Remote Sens. 2016, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.M.; Ke, Y.H.; Bai, J.H.; Li, P.; Lyu, M.Y.; Gong, Z.N.; Zhou, D.M. Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow River Delta, China. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102180. [Google Scholar] [CrossRef]
- Moreno, G.; de Carvalho, O.A.; de Carvalho, O.; Andrade, T.C. Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series. Ocean Coast. Manag. 2023, 231, 106381. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery. Water 2022, 14, 244. [Google Scholar] [CrossRef]
- Rodriguez-Garlito, E.C.; Paz-Gallardo, A.; Plaza, A.J. Mapping the Accumulation of Invasive Aquatic Plants in the Guadiana River, Spain, Using Multitemporal Remote Sensing. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5504705. [Google Scholar] [CrossRef]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sens. Environ. 2001, 75, 100–112. [Google Scholar] [CrossRef]
- Sothe, C.; de Almeida, C.M.; Liesenberg, V.; Liesenberg, V. Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sens. 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.T.; Long, T.F.; Jiao, W.L.; Zhang, X.M.; He, G.J.; Wang, W.; Peng, Y.; Xiao, H. Siamese Detail Difference and Self-Inverse Network for Forest Cover Change Extraction Based on Landsat 8 OLI Satellite Images. Remote Sens. 2022, 14, 627. [Google Scholar] [CrossRef]
- Radman, A.; Shah-Hosseini, R.; Homayouni, S. A deep convolutional neural network for burn progression mapping using Sentinel-1 SAR time-series. Int. J. Remote Sens. 2023, 44, 2196–2215. [Google Scholar] [CrossRef]
- Lei, Z.L.; Li, H.; Zhao, J.; Jing, L.H.; Tang, Y.W.; Wang, H.K. Individual Tree Species Classification Based on a Hierarchical Convolutional Neural Network and Multitemporal Google Earth Images. Remote Sens. 2022, 14, 5124. [Google Scholar] [CrossRef]
- Interdonato, R.; Ienco, D.; Gaetano, R.; Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. ISPRS-J. Photogramm. Remote Sens. 2019, 149, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Zhao, X.; Liang, S.L.; Wu, D.H.; Zhang, X.; Wang, Q.; Zhao, J.C.; Du, X.Z.; Zhou, Q. Developing Long Time Series 1-km Land Cover Maps From 5-km AVHRR Data Using a Super-Resolution Method. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5479–5493. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, B.; Huang, X. A hierarchical category structure based convolutional recurrent neural network (HCS-ConvRNN) for Land-Cover classification using dense MODIS Time-Series data. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102744. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, W.; Gu, S.; Xie, L.; Wang, Y.; Jiao, J.; Ye, Q. Conformer: Local features coupling global representations for visual recognition. arXiv 2021, arXiv:2105.03889. [Google Scholar]
- Pan, X.; Ge, C.; Lu, R.; Song, S.; Chen, G.; Huang, Z.; Huang, G. On the integration of self-attention and convolution. arXiv 2022, arXiv:2111.14556. [Google Scholar]
- Li, R.; Zheng, S.Y.; Duan, C.X.; Wang, L.B.; Zhang, C. Land cover classification from remote sensing images based on multi-scale fully convolutional network. Geo-Spat. Inf. Sci. 2022, 25, 278–294. [Google Scholar] [CrossRef]
- Zhang, W.T.; Wang, M.; Guo, J.; Lou, S.T. Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data. Remote Sens. 2021, 13, 2749. [Google Scholar] [CrossRef]
- Zhang, W.X.; Zhang, H.; Zhao, Z.T.; Tang, P.; Zhang, Z. Attention to Both Global and Local Features: A Novel Temporal Encoder for Satellite Image Time Series Classification. Remote Sens. 2023, 15, 618. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W. Segment anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
Year | Title | Specifying Field | Specifying RS Data | References |
---|---|---|---|---|
2019 | A Review on Deep Learning Techniques for 3D Sensed Data Classification | - | 3D sensed data | [21] |
2020 | Review and Evaluation of Deep Learning Architectures for Efficient Land Cover Mapping with UAS Hyper-Spatial Imagery: A Case Study Over a Wetland | Wetland | UAS hyperspatial imagery | [22] |
2021 | Land-Use Mapping for High-Spatial Resolution Remote Sensing Image Via Deep Learning: A Review | LU | High-spatial resolution imagery | [23] |
2021 | Review on Convolutional Neural Networks (CNN) in vegetation remote sensing | Vegetation | - | [24] |
2021 | Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine Learning and Neural-Network-Based Classification: A Review | Urban land cover | Hyperspectral and LiDAR data | [25] |
2022 | Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review | - | Hyperspectral imagery | [26] |
2022 | Hyperspectral Image Classification: Potentials, Challenges, and Future Directions | - | Hyperspectral image | [20] |
2022 | Deep learning techniques to classify agricultural crops through UAV imagery: a review | Agriculture | UAV imagery | [27] |
2023 | Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis | - | Satellite imagery | [28] |
2023 | Deep Learning Models for the Classification of Crops in Aerial Imagery: A Review | Agriculture | Aerial imagery | [18] |
2023 | Crop mapping using supervised machine learning and deep learning: a systematic literature review | Agriculture | - | [29] |
2023 | Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review | Agriculture | - | [30] |
Image Type | Name | Launch Year | Temporal Resolution | Pixel Spatial Resolution |
---|---|---|---|---|
MROI | Landsat5 | 1984 | 16 days | MS resolution: 30 m LWI: 120 m |
MROI | Landsat7 | 1999 | 16 days | Panchromatic resolution: 15 m MS resolution: 30 m |
LROI | Terra/Aqua (MODIS) | 1999/ 2002 | 1–2 days | Depends on the band: 250 m to 1000 m |
HROI | Formosat-2 | 2004 | Daily | Panchromatic resolution: 2 m MS resolution: 8 m |
SAR | COSMO-SkyMed | 2007–2010 | 16 days | Depends on the operational mode The best resolution for stripmap mode (Himage): 3 m |
SAR | RadarSat-2 | 2007 | 24 days | Full polarization mode resolution: 8 m |
MROI+HSI | HJ-1 A/B | 2008 | Single satellite: 4 days HJ-1 A and B: 2 days | RGB-NIR resolution (CCD): 30 m HSI resolution: 100 m IRS resolution: 150–300 m |
HROI | Worldview-2 | 2009 | 1.1 days | Panchromatic resolution: 0.46 m MS resolution: 1.84 m |
HROI | ZY3 | 2012 | 5 days | Panchromatic resolution: 2.1 m MS resolution: 5.8 m |
MROI | Landsat8 | 2013 | 16 days | Panchromatic resolution: 15 m MS resolution: 30 m |
HROI | GF-1 | 2013 | 4 days | Panchromatic resolution: 2 m MS resolution: 8 m |
HROI | GF-2 | 2014 | 5 days | Panchromatic resolution: 0.8 m MS resolution: 3.2 m |
HROI | Worldview-3 | 2014 | Daily | Panchromatic resolution: 0.31 m MS resolution: 1.24 m |
SAR | Sentinel-1 | 2014 | Single satellite: 12 days S1A and B: 6 days | Depends on the operational mode The best resolution for stripmap mode: 5 m |
MROI | Sentinel-2 | 2015 | Single satellite: 10 days S2A and B: 5 days | Depends on the band: 10 m to 60 m RGB-NIR resolution: 10 m |
MROI | VENμS | 2017 | 2 days | 10 m |
Name | Type | Year | Region | Spatial Resolution /Data Quantity | Classifications | Link |
---|---|---|---|---|---|---|
China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set | LULC | 1980–2015 (five years) | China | 0.05° | 6 primary classes and 25 secondary classes | https://data.tpdc.ac.cn/zh-hans/data/a75843b4-6591-4a69-a5e4-6f94099ddc2d/ (accessed on 11 February 2023) |
Cropland Data Layer | Crop | 1997–2021 (yearly) | USA | The CDL has a ground resolution of 30 or 56 m depending on the state and year. | 131 crop types | https://nassgeodata.gmu.edu/CropScape (accessed on 8 February 2023) |
ChinaCropPhen | Crop | 2000–2015 | China | 1 km | Wheat, corn, and rice | https://doi.org/10.6084/m9.figshare.8313530 (accessed on 8 February 2023) |
Land Use and Land Cover Survey | LULC | 2001–2018 (three years) | European Union | The 2009–2015 field surveys consisted of around 67,000 points.The ongoing Lucas survey 2018 is based on 337,854 points/observations. | 7/10/16 land cover classes | https://ec.europa.eu/eurostat/web/lucas (accessed on 10 February 2023) |
Land Parcel Identification System | Crop | 2005–2020 (yearly) | European Union | The level of detail for crop types varies from country to country. | ||
Annual Crop Inventory | Crop | 2009–2021 | Canada | 30 m (56 m in 2009 and 2010) | 72 classes of land (52 crop types) | https://open.canada.ca/en/apps/aafc-crop-inventory (accessed on 8 February 2023) |
California Department of Water Resources | LULC/Crop | 2014, 2016, 2018, 2019 (Statewide) 2015, 2017 (Delta) | California, USA | 40 w+ parcels | 256 land cover classes, 13 crop types, and one other category | https://gis.water.ca.gov/app/CADWRLandUseViewer (accessed on 8 February 2023) |
Satellite Image Time Series with Pixel-Set and patch format | Crop | 2017 | Southern France | 191,703 individual parcels (24 dates) | 20 classes nomenclature designed by the subsidy allocation au-thority of France | https://github.com/VSainteuf/pytorch-psetae (accessed on 8 February 2023) |
FROM-GLC10 | LULC | 2017 | Global | 10 m | 10 land cover classes | http://data.ess.tsinghua.edu.cn (accessed on 8 February 2023) |
ZueriCrop | Crop | 2019 | Swiss Cantons of Zurich and Thurgau | 28,000 parcels | 48 crop types | https://polybox.ethz.ch/index.php/s/uXfdr2AcXE3QNB6 (accessed on 10 February 2023) |
MT-RS dataset from 2021 IEEE GRSS Data Fusion Contest | LULC | 2019 | Maryland, USA | 2250 different tiles (each one covering approximately a 4 km × 4 km area) | 15 classes including various forest and developed categories | https://www.grss-ieee.org/community/technical-committees/2021-ieee-grss-data-fusion-contest-track-msd/ (accessed on 10 February 2023) |
Types | Name | Advantages | Weaknesses | References |
---|---|---|---|---|
Early CNNs | AlexNet [109] | It can avoid overfitting and improve training speed by discarding units randomly | The network depth is shallow, leading to low classification accuracy | [60,62,66,95,112,113] |
VGG [114] | Nonlinear fitting ability is improved by stacking convolution kernels continuously | The training speed is slow | ||
Fully Convolutional Networks (FCNs) | FCN [115] | The number of parameters is invariant and can be used for transfer learning; contains more parameters than DCNN | It is not sensitive enough to image details and does not consider the spatial relationships between pixels | [116,117,118,119] |
Encoder–Decoder | U-Net [120] | The U-shaped network structure is useful for extracting the spatial and temporal features effectively and outperforms 2D-CNN; a 3D U-Net can identify different temporal features in heterogeneous crop types | Training speed is slow and less contextual information is obtained | [99,121,122,123] |
SegNet [124] | Encoder–decoder architecture has advantages in multitemporal classification as it allows a more progressive reconstruction of spatial information | The model is large and requires more computer memory | [68,83] | |
Short-cut | ResNet [125] | Uses hopping connections to avoid gradient explosions caused by increasing the number of neural network layers | It requires a lot of computing resources to train, the effective sensing field is not deep enough, nd it depends heavily on the parameter settings | [42,126,127] |
DenseNet [128] | Each layer is densely connected to the rest to ensure maximum flow of information between layers; the features can be transferred more effectively, which is beneficial for improving the information flow and gradient | The structure is more complex and requires more computing resources and time | [129,130,131] | |
Dual Path Networks (DPNs) [132] | It combines the characteristics of ResNet and DenseNet, which can propagate gradients to the deeper level | Requires a lot of computing resources | [17] | |
Dilated convolution | DeepLab [133] | Void convolution is used to avoid information loss without increasing the number of parameters | Requires a lot of computing resources | [134] |
Pyramid network | Feature Pyramid Network (FPN) [135] | It is a hierarchical structure with top-down horizontal connections that add precise spatial information to the segmentation | There is a semantic gap between different layers, and the downsampling process will lose the feature information of top-level pyramid | [136,137,138] |
Pyramid Attention Network (PAN) [139] | Propagation of low-level features is improved by enhanced bottom-up paths | The path of information from the bottom to the top is long |
Name | Advantages | Weaknesses | References |
---|---|---|---|
GRU | It has fewer parameters, so training is slightly faster and it requires less data to generalize | Classification accuracy may be lower than LSTM | [60,143,145,146] |
BiLSTM | It can extract temporal characteristics before and after and achieves good results in rice recognition | It requires a lot of computational memory | [150,151,152] |
Im-BiLSTM | The combination of BiLSTM and a fully connected interpolation layer has achieved good performance in multitemporal crop mapping | Imputing missing data requires additional computing resources, and the quality of the imputed data will affect the final classification accuracy | [97] |
Name | Basic Model | Application | Reference |
---|---|---|---|
C-AENN | CNN+SAE | Crop classification | [159] |
SO-UNet | U-Net+SOM | Semi-supervised forest identification | [160] |
GAN Embedded CNN and LSTM | LSTM+CNN+GAN | Semi-supervised crop classification | [106] |
STEGON | CNN+GAT | Land cover classification | [161] |
Updated dual-branch network | AE+Transformer | Crop classification | [162] |
Class | Label | Train Pixels | Test Pixels |
---|---|---|---|
0 | Corn | 711,034 | 209,060 |
1 | Sorghum | 102,176 | 35,526 |
2 | Winter wheat | 670,832 | 299,209 |
3 | Fallow | 539,469 | 343,275 |
4 | Grassland | 561,835 | 38,456 |
5 | Other | 89,514 | 25,099 |
Model Category | Model Name | Input Format | OA (%) | Kappa | Train Time | Test Time |
---|---|---|---|---|---|---|
CNN-based models | Conv2D | Image block | 79.81 | 0.7215 | 100 m 33 s | 12 s |
U-Net | Image block | 86.11 | 0.8063 | 108 m 13 s | 14 s | |
DPN | Image block | 85.86 | 0.805 | 128 m 38 s | 12 s | |
Deeplabv3 | Image block | 85.93 | 0.8034 | 132 m | 13 s | |
Fusion models | ConvLSTM | Image block | 90.76 | 0.8562 | 131 m 44 s | 15 s |
U-Net+LSTM | Image block | 91.21 | 0.8615 | 239 m 46 s | 14 s |
Model Category | Model Name | Input Format | OA (%) | Kappa | Train Time | Test Time |
---|---|---|---|---|---|---|
CNN-based models | Conv1D | Per pixel | 86.89 | 0.8165 | 226 m 42 s | 15 s |
RNN-based models | LSTM | Per pixel | 86.90 | 0.8158 | 140 m 26 s | 11 s |
GRU | Per pixel | 84.90 | 0.7884 | 136 m 33 s | 9 s | |
AM-based models | Transformer | Per pixel | 85.86 | 0.8024 | 1205 m 29 s | 27 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Sun, Y.; Zhang, W.; Wang, Y.; Cao, X.; Wang, Y. Application of Deep Learning in Multitemporal Remote Sensing Image Classification. Remote Sens. 2023, 15, 3859. https://doi.org/10.3390/rs15153859
Cheng X, Sun Y, Zhang W, Wang Y, Cao X, Wang Y. Application of Deep Learning in Multitemporal Remote Sensing Image Classification. Remote Sensing. 2023; 15(15):3859. https://doi.org/10.3390/rs15153859
Chicago/Turabian StyleCheng, Xinglu, Yonghua Sun, Wangkuan Zhang, Yihan Wang, Xuyue Cao, and Yanzhao Wang. 2023. "Application of Deep Learning in Multitemporal Remote Sensing Image Classification" Remote Sensing 15, no. 15: 3859. https://doi.org/10.3390/rs15153859
APA StyleCheng, X., Sun, Y., Zhang, W., Wang, Y., Cao, X., & Wang, Y. (2023). Application of Deep Learning in Multitemporal Remote Sensing Image Classification. Remote Sensing, 15(15), 3859. https://doi.org/10.3390/rs15153859