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Abstract: High spatial resolution remote sensing image (HSRRSI) data provide rich texture, geometric
structure, and spatial distribution information for surface water bodies. The rich detail information
provides better representation of the internal components of each object category and better reflects
the relationships between adjacent objects. In this context, recognition methods such as geographic
object-based image analysis (GEOBIA) have improved significantly. However, these methods focus
mainly on bottom-up classifications from visual features to semantic categories, but ignore top-down
feedback which can optimize recognition results. In recent years, deep learning has been applied in
the field of remote sensing measurements because of its powerful feature extraction ability. A special
convolutional neural network (CNN) based region proposal generation and object detection integrated
framework has greatly improved the performance of object detection for HSRRSI, which provides
a new method for water body recognition based on remote sensing data. This study uses the
excellent “self-learning ability” of deep learning to construct a modified structure of the Mask R-CNN
method which integrates bottom-up and top-down processes for water recognition. Compared
with traditional methods, our method is completely data-driven without prior knowledge, and it
can be regarded as a novel technical procedure for water body recognition in practical engineering
application. Experimental results indicate that the method produces accurate recognition results for
multi-source and multi-temporal water bodies, and can effectively avoid confusion with shadows
and other ground features.

Keywords: object recognition; high spatial resolution remotely sensed imagery; multi-source and
multi-temporal; deep learning; water body

1. Introduction

The formation, expansion, shrinkage and disappearance of surface waters are important factors
affecting regional climate change and ecological environment evolution [1]. Accurate extraction of
water body information provides necessary data to support the study of spatial and temporal evolution
of regional ecological environments. It is of great significance for water resources investigation,
water conservancy planning, river basin management, flood monitoring and post-disaster assessment.
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With the continuous development of remote sensing technology, using remote sensing imagery to
obtain high-precision water resources information in a timely manner is an important tool for water
resources investigation and monitoring.

The differences in reflection, absorption and transmission of solar radiation between water and
land mean that their differences in remote sensing images are obvious, and the boundary between
land and water is relatively clear. Therefore, the research on water extraction based on remote
sensing data has been extensively carried out over the years and its application level is relatively
wide. The general water information extraction model can be established directly through the spectral
characteristics and imaging mechanism of water body. This mechanism has achieved good results
in advanced very high resolution radiometer (AVHRR) and other low—-medium-scale images [2-5].
Subsequently, texture, morphology and other features have been gradually introduced. As a result,
image segmentation and classification algorithms such as threshold segmentation, edge extraction,
decision tree and support vector machine are used to effectively extract water body information from
medium and high-resolution images [6-11]. In view of the spectral characteristics of water bodies
determined through advanced very high resolution radiometer (AVHRR), thematic mapper (TM) and
other multi-spectral remote sensing data, a variety of water body indices have been proposed and
developed. Among them, McFeeters proposed the normalized difference water index (NDWTI) [12].
Following that, a new water index, which combines the humidity index of tasseled cap (TC) transform,
was further developed by Gao et al. [13]. Xu also proposed a modified normalized difference water
index (MNDWI) [14] by modifying band combination, and Feyisa proposed an automated water
extraction index (AWEI) [15]. These indices quantitatively describe the image characteristics of water
information and can effectively distinguish water information from shadows and other irrelevant
information in specific application scenarios.

Most of the aforementioned water information extraction methods are based on a unified model,
which separates the water information from the background through an integrated calculation process
of a global image. However, in practical applications, in a global image, the physical and chemical
characteristics of different water units or the differences in the surrounding environmental impact
will not necessarily make their imaging characteristics balanced. If the global unified model is used
to extract each water unit, there will be a certain gap from the precise target. Moreover, the method
based on threshold segmentation often must determine the optimal threshold artificially. Due to the
differences of illumination and atmospheric conditions, observation angles and underlying surface
properties, the optimal threshold for different data varies greatly. It is very difficult to automatically
determine the appropriate threshold for each scene image or water body [16].

There are some shortcomings in using the method system based on pixel classification and
geographic object-based image analysis (GEOBIA) for high-resolution remote sensing images.
The traditional image analysis method based on pixels can only extract and use the spectral statistical
information of a single pixel but neglects the spatial information between objects [17], therefore it
cannot make full use of the advantages of high-resolution images. GEOBIA technology can make full
use of the rich information of size, shape and texture of image objects in high-resolution images [18].
For high-resolution images, the effectiveness and accuracy of object-based image analysis outperforms
traditional methods based on pixels [19]. In this process, segmentation scale, segmentation effectiveness
and feature selection are the basis and key of “object-level” remote sensing image analysis. They are
directly related to subsequent information extraction and analysis [20,21]. How to select appropriate
segmentation scale parameters to produce physical image parcels and semantic image objects remains
a challenge [22,23].

At present, there are mainly two methods to choose segmentation scale parameters in the field
of image processing. One is scale optimization based on supervised or unsupervised segmentation
evaluation of many scale segmentation results. The essence of this method is a kind of evaluation after
segmentation, rather than the evaluation before segmentation, and it consumes substantial computing
resources for segmentation and evaluation. Moreover, the degree of automation is not high. The other



Sensors 2020, 20, 397 3 of 25

is object-oriented multi-feature collaborative segmentation scale parameter selection (including not
only spectrum or texture, but also shape and scale context). In general, segmentation scale selection
methods are grouped into three types: (1) selection based on experience [24-27], (2) selection based
on specific scale evaluation index [28-30] and (3) selection based on specific model calculation and
analysis [31-33]. These scale selection methods have limitations in selecting segmentation parameters
and cannot consider the main characteristics of different objects simultaneously. Due to the complexity
of high spatial resolution remote sensing data, and variable sizes of geographic features and their
different distributive patterns, it is difficult to build a global contour optimization parameter model to
guide parameter settings in large regions effectively. Furthermore, it is also challenging to automatically
give a unique set of parameters per object simultaneously [34].

In recent years, the application of deep learning in the field of remote sensing has become
more extensive, and its progress has many shortcomings, especially in target detection [35], target
recognition [36] and semantic segmentation [37]. Deep learning is a process through which a set
of machine learning algorithms attempt to model high-level abstractions of data by using deep
architectures composed of multiple nonlinear transformations [38]. The method of deep learning
effectively adds semantic information to the sample making process, which can effectively improve the
case segmentation of ground objects. Over the last decades, several relevant deep learning methods
that combine the spatial and the spectral information to extract spatial-spectral features have been
proposed [39-51]. It is now commonly accepted that spatial-spectral-based methods can significantly
improve the classification performance.

The Worldview-3 images used in this study are composed of panchromatic band and multispectral
bands. The former has high spatial resolution and the latter has high spectral resolution. In this study,
we used panchromatic-multispectral fusion methods to generate remote sensing images with both high
spatial resolution and high spectral resolution as training data in an improved Mask R-CNN network
model. Then we experimented with urban water recognition for multi-source and multi-temporal
remote sensing images based on a modified structure of Mask R-CNN. The experiments produced
state-of-the-art results and demonstrated the effectiveness of the proposed method.

2. Materials

2.1. Study Area

Tongzhou District (39°36’—40°02" E, 116°32’-116°56” N), located in the southeastern part of Beijing,
is the northern starting point of the Beijing—-Hangzhou Grand Canal in the alluvial-flood plains of
the Yongding and Chaobai Rivers. In our study, Tongzhou New Town was chosen as the study
site (Figure 1) because it is a typical region that has experienced development and urbanization in
recent decades.

Tongzhou New Town is in the central hub of the Bohai Rim Economic Circle. It is a new urban area
and comprehensive service center for Beijing’s future development. This area contains countryside,
residential, cultural and industrial areas. Various and versatile architecture types resulting in surface
coverage elements with different color, size and usage make it an ideal study area in which to evaluate
the potential of a water recognition algorithm.

2.2. Data

This study uses the high spatial resolution remote sensing image (HSRRSI) image data of Tongzhou
New Town (39°84'-39°96" E, 116°63’-116°78’ N) in Beijing City. For object recognition of urban water
for multi-source HSRRSI, we selected the images acquired by the Worldview-3 satellite and the
GaoFen-2 as data sources, including panchromatic and multispectral images. We selected Worldview-3
HSRRSI data from September 2017 and October 2014 and GF-2 HSRRSI data from April 2016 and
September 2018 for the study of object recognition of urban water for multi-temporal HSRRSI (Figure 2).
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Figure 1. Study area.
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Figure 2. (a) Experiment data, (b) Worldview-3 HSRRSI data of September 2017, (c) Worldview-3
HSRRSI data of October 2014, (d) GF-2 HSRRSI data of April 2016 and (e) GF-2 HSRRSI data of
September 2018.

The Mask R-CNN algorithm used in this experiment supports three-band images. Generally, the
information content of the three bands is enough to support the research of water recognition. In this
study, 0.3 m panchromatic image and the R, G and B bands of 1.24 m multispectral image from the
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Worldview-3 satellite were fused to obtain 0.3 m true color HSRRSI. A panchromatic image of 0.8 m
and the R, G and B bands of 3.2 m multispectral images of GF-2 satellite were fused to obtain 0.8 m true
color HSRRSI, which was conducive to subsequent production of training samples and verification of
the network model. The image was geometrically corrected to ensure the effect of data fusion.

There was less high reflection in water bodies in the satellite imagery of Tongzhou New Town.
From the perspectives of spectrum, water bodies in this study had a strong absorption of sunlight,
and generally showed weak reflectivity compared with land areas. However, the spectral characteristics
of water at various wavelengths are not the same. Usually from visible light to mid infrared band,
the reflection of water is gradually weakened. Its absorption is the strongest in the near infrared
and mid infrared wavelength range. Based on spectral characteristics of water bodies, researchers
have established and developed water body indices to enhance water body information by ratio
operation [12-14]. In the ratio calculation, the most classic is the normalized difference water index
(NDWI). The calculation of NDWI can suppress the information of land vegetation and highlight the
information of the water body, as well as separate the water body information from the information
of shadow in specific application scenarios. However, it requires a large amount of computation for
simultaneous interpretation of the image of different sensors and different imaging conditions to obtain
NDWTI images with comparable and similar statistical characteristics. Therefore, it is difficult to derive
representative features from the water body or build a unified model to drive water body information
based on NDWI.

In addition, the functional divisions in the city were complex and diverse, the water quality in
different functional areas was different (which led to vast differences in the spectrum of corresponding
water bodies), and the shadows of buildings and vegetation were easily confused with water bodies,
which posed a great challenge to the recognition of urban water bodies.

3. Methods

3.1. Data Pre-Processing

Current deep learning is data driven, therefore the accuracy of deep learning techniques depend
heavily on the training dataset [52]. The Worldview-3 images used in this study were composed of
panchromatic band and multispectral bands. Previous research found that the principal component
substitution (PCS) fusion method has the best comprehensive effectiveness for land cover (features)
object recognition based on deep learning [53]. Therefore, we used PCS as our fusion method to
generate remote sensing images with both high spatial resolution and high spectral resolution.

3.2. Sample Dataset Construction

The information capacity and size of the fused remote sensing images are very large. Input of
image data that is too large will lead to the decrease of training and prediction efficiency of the deep
learning algorithm. In addition, the full connection layer of Mask R-CNN needs a fixed size input.
If the size of the input image varies, the input image will be adjusted to the same size before entering
the full connection layer. The size of feature vectors extracted by convolution layer also changes, which
affects the final prediction accuracy. Therefore, after synthesizing the load capacity, training efficiency
of the neural network algorithm, and training image information, we divided the fused remote sensing
image into several small-scale images of 500 x 500 (Figure 3). Then we stretched the 500 x 500 image
linearly from 2% to 98% maximum and minimum, changed the image bit depth from 16 bits to 8 bits,
simplified the data capacity of the training image to fit the Mask R-CNN training network and further
improved the processing speed of the algorithm.
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Figure 3. Experiment data (A) overview of the study area, (B) samples of land-use class: (a) residential,
(b) commerecial, (c) infrastructure, (d)industrial, (e) playground, (f) water, (g) farmland, (i) breeding,
(j) unused land, (k) woodland and (C) Tongzhou New Town image fused by principal component
substitution (PCS).

Of the maximum and minimum stretch, 2%-98% was based on histogram distribution. First,
the gray histogram of the image was counted, and the cumulative distribution function of gray was
calculated. The gray values corresponding to 2% were defined as min value, and the gray values
corresponding to 98% were defined as max value. The gray values less than min value were changed
to the 2% min value and gray values greater than max was changed to the max value of 98%. Then the
gray values of the image were linearly stretched to the range of (0-255). Finally, the noise with too large
or too small pixel values was eliminated, which enhanced the image display effect. The mathematical

expression is as follows (1):
255

Y~ Max - Min
where x is the gray value of the corresponding pixel before stretching, y is the gray value of the
corresponding pixel after stretching.

X (x —Min). @

The selection of training sample quality not only had a significant impact on the accuracy of
water body recognition, but also played an important role in the performance of the water body
information extraction model. In order to ensure the accuracy and strong representation of the selected
training samples, we selected the image which covered the water body as our training data for the next
experiment. The common surface water bodies in remote sensing images are lakes, rivers, streams,
paddy fields etc. Due to the strong fluidity of water bodies, their spatial distribution and geometric
shape are influenced by many factors, such as topography, water level, human modification, etc.
Water bodies show many different morphological characteristics under different circumstances, which
increases the difficulty of object recognition of urban water from remote sensing images. In object
recognition of urban waters based on deep learning, it is critical that the samples contain abundant
water characteristics, to ensure the correct learning of water characteristics by the deep learning model.
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According to the surface characteristics of water bodies in the study area, we classified water bodies
into the following categories: lakes, large rivers, small rivers, paddy fields, etc. The morphological
characteristics of water bodies mainly include irregular roundness, banded, aggregated massive,
slender strip, others. To meet the requirements of deep learning samples for diversity of features,
we selected as many corresponding water samples as possible in order to complete the construction
of an in-depth learning water extraction sample library. Sample information of window cutting was
random, which also ensured the diversity of training data. Based on water body recognition, it was
very important to enhance the generalization ability of the model. Table 1 shows the examples of
training samples.

Table 1. Water Body Morphological Characteristics and Remote Sensing Image Examples.

Type Features WV-2014 WV-2017 GF-2016 GF-2018

Lake Irregular
roundness

Rivers Banded, Trunk

distinct

. Clustered,

Paddy Field Regular, Block
Small .

Rivers Slender strip

3.3. Object Recognition Method Based the Modified Mask R-CNN

3.3.1. The Modified Structure of Mask R-CNN

Mask R-CNN is mainly composed of three parts. The first part uses the convolutional neural
network to extract the features of the image. The second part extracts the candidate target bounding
box from the regional proposal network (RPN). The third part uses RolAlign to extract features from
each candidate box, predicting class, border offset refinement and output binary mask in parallel
in order to carry out classification, boundary regression and instance segmentation. In this study;,
we first transferred the training feature weights from the Coco data set to Mask R-CNN, and then
combined the features of large spectral differences within the high-resolution remote sensing image
class. The relationship between adjacent pixels and the shape characteristics they jointly represented
became the important factors for classification. Through the super parameter experiment and structural
modification, we focused on enhancing the extraction of middle and high-level features. Next, we
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introduced the structure subdivision of the modified Mask R-CNN in detail. The overall network

structure is shown in Figure 4.
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Figure 4. Mask R-CNN network architecture.

3.3.2. Infrastructure Network ResNet-FPN

In order to fully extract the features of the image, Mask R-CNN constructs the backbone network
of ResNet-FPN, which improves the training speed and recognition accuracy of the model significantly.
Convolutional neural network (CNN) can extract features of different levels of images. Generally,
with the increase of network layers, the image features extracted by the model will be more and more
abundant. However, once a simple stacking network reaches a certain depth, further increases in the
depth will not improve the performance of the model and might degrade it. This is because simply
increasing the depth of the network will result in gradient dispersion or gradient explosion, resulting
in a rapid decline in accuracy. ResNet solves this degradation problem. ResNet [54] is the champion
of the 2015 ImageNet competition classification task. It can increase the network depth to several
hundred layers and still have superior performance. The key to ResNet’s problem-solving capability is
the introduction of a deep residual learning framework.

ResNet maps several stacked layers to the residual mapping instead of directly fitting the desired
underlying mapping. If H(x) is the desired underlying mapping of the stacked linear layers, x represents
the input of the first layer of the stacked layers, then the stacked nonlinear layer fits another mapping
F(x) = H(x) — x. Let multiple nonlinear layers asymptotically approximate F(x) = H(x) — x, where F(x)
is the residual mapping to be learned, rather than approximating the expected stacking layer mapping
H(x), then the original mapping becomes F(x) + x. The aforementioned description can be realized by
feed forward neural networks with “shortcut connections” (Figure 5).
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Figure 5. Residual learning: a building block.

Shortcut connections [55-57] are those skipping one or more layers, and their outputs are added
to the outputs of the stacked layers. In the case that the input and output dimensions are the same, the
shortcut connection performs identity shortcuts as shown in Figure 6a. When the dimensions of input
and output channels are different, the shortcut connection performs projection shortcuts as shown in
Figure 6b. The dimension is matched by dimension reduction and dimension elevation througha 1 x 1
convolution layer. The calculation error of projection connection is lower [54]. In order to improve
the accuracy of the training model, the shortcut connections of all stacking layers are based on the
projection shortcuts.

64-d 256-d
V| -
1x1,64
3x3,64 relu y

el 3x3,64

3x3,64 l relu /

1x1,256 V
: relu : relu

(a) Identity Shortcuts (b) Projection Shortcuts

Figure 6. Shortcut connections.

The basic network structure of ResNet is shown in Figure 7. Figure 7a is applicable to the
case where the dimensions of the input and output channels of the stack layer are equal. It uses a
two-layer stack layer, mainly using a 3 X 3 convolution kernel. Figure 7b is applicable to the case
where the dimensions of the input and output channels of the stacked layer are different. It uses a
three-layer stacked layer, first using the 1 x 1 convolutional layer to reduce the dimension, then the 3 x 3
convolutional layer is used to extract features, and finally the 1 X 1 convolutional layer is used to increase
the dimension. ResNet refers to the VGG network [58] benchmark construction, mainly including the
convl, conv2_x, conv3_x, conv4_x, conv5_x five-part convolutional layer. The convolution kernel size
used by convl is 7 X 7. The number of convolution kernels is 64, and the step size is 2. The number of
convolution kernels is 64, the step size is 2, and padding pixel padding is 3. Batch normalization and
the rectified linear unit activation and maximum pooling of 3 X 3 are then performed. The following
four convolutional parts are designed with a building block, and end with a global average pooling
layer and a 1000-way fully connected layer with a soft max.

FPN [59] is a feature pyramid network. Due to the multi-level characteristics of a deep convolution
neural network, CNN generates a multi-scale and multi-level feature pyramid structure when
extracting features. The features generated by the pyramid structure at each level from bottom to
top are strengthened by semantic information in sequence, including high, middle and low-level
features with high resolution. However, due to the time-consuming and inefficient calculation of
feature pyramids, the network usually extracts a single scale from a convolution layer of the underlying
network, thus losing a large amount of feature information. For high-resolution images, only using
low-level semantic information would limit the recognition ability of the generated model, ultimately
making it difficult to achieve the desired results. If only high-level semantic information is used and
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the shape location information of low-level features is ignored, the final recognition effect for small

targets will be very poor.
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Figure 7. ResNet basic network structure.

In order to solve this problem, FPN improves the feature extraction process of CNN. By utilizing
the original multi-scale and multi-level pyramid structure generated by CNN, the high-level semantic
feature map is formed by integrating the features of all scales and hierarchies, so that the network can
improve the precise and fast detection capability of small objects in multi-scale without increasing the

amount of computation power.

The Mask R-CNN algorithm applied in this paper combined the ResNet residual network with
a FPN characteristic pyramid network. ResNet used the output results of the last residual structure
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of convl, conv2_x, conv3_x, conv4_x and conv5_x five-part convolution layer to generate {C1, C2,
C3, C4, C5} feature maps (from bottom to top) to form a feature pyramid. FPN made full use of the
feature pyramid generated by ResNet and used top-down up sampling and horizontal connection
process as shown in Figure 8. The feature maps with higher abstraction and stronger semantics were
sampled up, and the features of the former layer were connected horizontally to fuse the semantic
information of low, middle and high-level features of high-resolution images at different scales and
levels. The feature information of all scales was very rich, and the feature maps of different scales {P2,
P3, P4, P5, P6} were generated and input into RPN and RolAlign layers.

4
f |
C2 v i
= AN
- P2 v
g - A
Y
Cl /:/ N
// \
- N
=7 N
(E e
|
|
|
| [2xup|
|

Figure 8. A top-down architecture with lateral connections.

3.3.3. Region Proposal Network

RPN (region proposal network) is a lightweight neural network that scans images with sliding
windows and searches for areas where objects exist. The main steps include RPN anchor information
generation and region proposal generation.

RPN first generates anchor frame information by using the aforementioned {P2, P3, P4, P5, P6}
five-scale feature maps, including the category, probability score, region information and coordinate
correction information of each anchor frame. The input n X n feature map is used as a sliding window,
and then 256 n X n convolution kernels are used to generate 256 dimensional 1 X 1 feature maps. Finally,
the categories of anchor frame, probability score and regional information are generated through the
full connection layer. Next, based on the anchor mechanism, 15 anchor frames of different sizes are
generated on sliding windows of n X n size by applying three ratios of {1:1, 1:2, 2:1} anchors at five
scales. The anchor frame coordinates are modified by the regression correction results of the proposed
regional coordinates generated by RPN. These anchor proposal frames basically cover all possible areas
of the target. However, these proposals are large and highly overlapping. Non-maximum suppression
(NMS) is applied to these proposals. High overlapping and small area proposals are removed according
to the probability score to reduce redundant proposals without affecting the accuracy of detection, and
the final region proposal is generated (Figure 9).
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Figure 9. Overall flow chart of regional proposal network (RPN).

3.3.4. Fully Connected Layer

The classifier, border regression and mask branch of Mask R-CNN head are executed in the full
connection layer. The full connection layer must input a fixed size vector, and the extraction of spatial
mask requires the alignment of pixels to pixels. Mask R-CNN proposes the RolAlign layer, which
combines the {P2, P3, P4, P5, P6} feature map output from the FPN network with the positioning
candidate frame output from the RPN network as the input of the RoIAlign layer.

RolAlign extracts the structure of a small feature map from the region of interest (Rol). In order
to preserve the spatial correspondence of the pixels accurately and solve the misalignment problem
caused by two quantization in the Rol pooling operation, RolAlign cancels the quantization operation
and uses bilinear interpolation to obtain the image values of the pixels whose coordinates are floating
points. The whole feature aggregation process is transformed into a continuous operation, which
avoids rounding errors, calculates the exact value of each location and abstracts and reduces the
dimension of the input vector. Finally, the eigenvectors of the RolAlign layer are input into the classifier,
the border regression and the mask branches are processed in parallel at the full connection layer to
get the final recognition results.

3.3.5. General Workflow and Deep Learning Algorithm

The above section is the analysis of the Mask R-CNN structure. In this study, we implemented the
Mask R-CNN method by using an open-source package built on Keras and Tensorflow developed
by the team of Mask R-CNN [60]. The codes are available on GitHub (https://github.com/matterport/
Mask_RCNN). Based on the Mask R-CNN, we established a set of technical process systems for urban
water body recognition which included three main steps: (1) target sample extraction based on HSRRSI,
(2) training of the Mask R-CNN model and (3) object recognition based on Mask R-CNN. The general
workflow is shown in Figure 10.

In this study, we optimized the main network of Mask R-CNN to adapt to urban water body
recognition. In order to fully extract image features, Mask R-CNN constructs the backbone network of
ResNet-FPN. The commonly used ResNet consists of five parts: conv1l, conv2_x, conv3_x, conv4_x and
conv5_x, which generates the corresponding C1, C2, C3, C4 and C5 feature maps from the bottom up to
form the feature pyramid. These five parts of the convolution layer extract the features from different
levels of the image respectively. Combining the characteristics of the diversity of water types, irregular
edge contour and the different water quality in the spectrum, our method focused on adjusting the
network to extract high-level features in the image. To achieve the best recognition performance, we
conducted a series of experiments on which features at which depths were more effective, and which
structures better recognized these urban water bodies. Their details are presented in Table 2.


https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

Sensors 2020, 20, 397 13 of 25
r--—-———m—m>""="=-""+"—"""""""""""-""""7 , FrO— """/ -7 1
e O 4 N I
I [ HSRRSI J | | Train :
| I a
| \I/ : | Cross Validate Mask-RCNN |
| || I
| Fusion Training Data || I

|

| \I, | l Re-Train |

: | : Validate |
N |

: Slice | : :
|

| ‘I' | I Prediction l

: Quantization | : :
|

[ \I/ Testing Data | Input Model :

| \ 1 1] e.

| Feature Extraction i I Evaluation |

| | I

| AN J o / : I |

| | I

| Data Pre-Processing : | Method Implementation |

e e e e e o e - d

Figure 10. General workflow of object recognition of an urban water body based on deep learning.

Table 2. Layers and details of ResNet structure of different depths.

Layer Name ResNet 50 ResNet 65-C3  ResNet 80-C3  ResNet 65-C4  ResNet 80-C4 ResNet 110
Convl 7 X 7,64, Stride 2
3 x 3 max pool, stride 2
[ 1x1,64 [ 1x1,64 [ 1x1,64 [ 1x1,64 [ 1x1,64 1x1 64
Conv2_x 3x3,64 |x 3x3,64 |x 3x3,64 |x 3x3,64 |x 3x3,64 3><3’64 %3
| 1x1,256 | 1x1,256 | 1x1,256 | 1x1,256 | 1x1,256 1><1,256
3 3 3 3 3 !
[ 1x1,128 [ 1x1,128 [ 1x1,128 [ 1x1,128 [ 1x1,128 1x1,128
Conv3 x 3x3,128 | x 3x3,128 [x 3x3,128 [x 3x3,128 [x 3x3,128 |x 3x3,128 [x
- | 1x1,512 | 1x1,512 | 1x1,512 | 1x1,512 | 1x1,512 1x1,512
4 9 14 4 4 14
[ 1x1,256 [ 1x1,256 [ 1x1,256 [ 1x1,256 1x1,256 1x1,256
Convd x 3x3,256 |x | 3x3,256 [x | 3x3,256 |x | 3x3,256 ([x 3x3,256 |x [ 3x3,256 |x
- | 1x1,1024 | 1x1,1024 | 1x1,1024 | 1x1,1024 | 1x1,1024 1x1,1024
6 6 6 11 16 16
[ 1x1,512 [ 1x1,512 [ 1x1,512 [ 1x1,512 [ 1x1,512 1x1,512
Conv5 x 3x3,512 |x | 3x3,512 |x | 3x3,512 |x | 3x3,512 |x [ 3x3,612 |x [ 3x3,512 (X
- | 1x1,2048 | 1x1,2048 | 1x1,2048 | 1x1,2048 | 1x1,2048 1x1,2048
3 3 3 3 3 3

Average pool, 1000-d fc, SoftMax

By increasing and decreasing the blocks of conv3_x and conv4_x in different convolution layers,
we verified the ability of effective feature extraction at intermediate and advanced levels respectively
and used ResNet structure with different depths to test the impact of network depth on urban water
body recognition. The depths were 50, 65 (C3), 80 (C3), 65 (C4), 80 (C4) and 110 (the number of layers
refers only to the convolution layer and fully connected layer). ResNet 50 is the original backbone
network used by Mask R-CNN. It has 50 layers, including 49 convolution layers and a fully connected
layer. Compared with ResNet 50, ResNet 65-C3 adds five new blocks in conv3_x, thus adding an
additional 15 volume accumulation layers, totaling 65 layers; ResNet 80-C3 adds 10 new blocks in
conv3_x, thus adding 30 volume accumulation layers, totaling 80 layers; ResNet 65-C4 adds five new
blocks in conv4_x; ResNet 80-C4 adds 10 new block blocks in conv4_x. The above experimental design
was to verify the influence of C3 and C4 on water body recognition respectively. Next, in order to
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verify the influence of C3 and C4 on each other, we added 10 blocks, thus adding 60 accretion layers in
conv3_x and conv4_x separately and built the ResNet 110 network.

In the next experiment, we selected 125 training images from each of the four research areas
as training data. Using NVIDIA GeForce GTX 1060 with single GPU, we trained six Mask R-CNN
models with different ResNet structures and used the trained model to recognize the water body of 100
validation data sets. Table 3 shows the water recognition accuracy. From the experimental results, we
found that the recognition accuracy of the model generally increased with the deepening of network
layers. However, ResNet 110 did not show better recognition performance than ResNet 80-C3 and
ResNet 80-C4. This was expected, because deeper features would reduce the spatial resolution of
feature images, which would result in smaller object differences and recognition accuracies.

Table 3. Performance comparison of different depth networks.

Category  Index ResNet50 ResNet65-C3  ResNet80-C3  ResNet 65-C4  ResNet 80-C4 ResNet 110

Actual 118 118 118 118 118 118

Prediction 95 102 112 105 116 135

Water Match 72 83 94 87 98 106
Precision 0.7579 0.8137 0.8393 0.8286 0.8448 0.7852
Recall 0.6102 0.7034 0.7966 0.7373 0.8305 0.8983

Next, we balanced and optimized the network structure according to the existing experimental
results, which not only prevented the accuracy from decreasing due to the excessive number of
layers, but also considered the effect of deepening C3 and C4 layers on recognition. Based on many
experiments, ResNet 116 had the best performance (pre: 0.8572; recall: 0.9322) as a backbone network
of Mask R-CNN. The specific structure of ResNet 116 is shown in Table 4. Compared with the original
backbone network ResNet 50, ResNet 116 added four new blocks in the conv3_x section, thus adding
12 convolution layers, and 18 new blocks in the conv4_x section, thus adding 54 convolution layers.
The convolution layer and the full connection layer of the whole network were 116 layers in total.

Table 4. The network structure of ResNet-116.

ResNet 116
Convl Conv2_x Conv3_x Conv4_x Conv5_x
3 X 3 max pool, stride 2 1x1,128 1x1,256 1x1,512
7 X 7, 64, stride 2 1x1,64 3x3,128 [x8 3x3,256 X 24 3x3,512 X3
3x3,64 |x3 1x1,512 1x1,1024 1x1,2048
1x1,256

In this section, we studied ResNet-based features to identify at which depths of network would
improve the effect of urban water body recognition and whether deeper features of images would
benefit the performance of water body recognition. A deeper discussion of the Mask R-CNN algorithm
is beyond the scope of this study and we refer readers to He et al. [61] for a detailed discussion on the
mathematical basis of the algorithm.

4. Experiments and Discussion

4.1. Data Sets and Evaluation Measures

Based on the four remote sensing images of Tongzhou New Town, we selected the corresponding
samples as training data and test data respectively (Table 5). All target objects in training and testing
data sets were labeled manually. We used LabelMe, an open source tool, to manually extract water
samples and generate corresponding JSON files. Then the attributes and mask information were
generated by JSON files. The specific process of sample construction method is shown in Figure 11.
Figure 12 lists examples of 500 x 500 tiles of different sub-datasets.
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Table 5. The strategy of training/testing division for different datasets.

w Training Samples Testing Samples
Dataset

WV-2014 500 100
WV-2017 500 100
GF-2016 500 100
GF-2018 500 100

LT

s 1 J
I% Manual Extraction of Target Objects ) Data Conversion

Original Image JSON File

img.png info.yaml label.png label names.txt label viz.png
Attributes and Masks

Figure 11. The technical process of water sample construction method. The original image was
manually labeled to generate the label, mask and the position information of water bodies.

To quantify the effect of feature recognition, we used the intersection of union (IoU) as the main
index for pixel-based evaluation, which is defined as:

TP

U= ——
U= 5T PP IN

@)
where TP indicates the number of pixels correctly classified as water bodies, FP indicates the number of
pixels misclassified as water bodies and FN indicates the number of pixels misclassified as background.

In water recognition, the results can be categorized as: true positive (TP), which indicates the
number of water bodies that are correctly detected (IoU > 50%); false positive (FP), which indicates
the number of water bodies that are falsely detected and false negative (FN) indicates the number of
water bodies that are falsely detected as background. We used the precision and the recall functions to
evaluate the recognition accuracy of the model, which are defined as:

.. TP
Precision = TP - 7P 3)
TP
Recall = TP—}——FI\I (4)

where TP indicates the number of water bodies that are correctly detected (IoU > 50%). FP indicates
the number of water bodies that are falsely detected. FN indicates the number of water bodies that are
falsely detected as background.
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(d) GF-2018

Figure 12. Examples of the WV-2014 (a), WV-2017 (b), GF-2016 (c), GF-2018 (d) sub-datasets. From top
to bottom: image, label. From left to right: water bodies with different morphological characteristics.

4.2. Network Training

As an initial experiment, we trained four Mask R-CNN models on four datasets. The main
parameters of the model included target category to be detected, anchor scales, batch size, epochs,
learning rate. The anchor frame directly affects the accuracy of the positioning frame. The appropriate
size of the anchor scales is based on the size of the input image and the detection target. Batch size
refers to the amount of training data in each batch. If the batch size is too small, the network weight will
be updated too frequently, which will make the network difficult to converge, and the overall training
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speed will be slow; if the batch size is too large, the data will lack randomness, which tends to make
the gradient decline in a single direction and fall into a local optimum. Epoch refers to the process
of feature learning after all training data have been inputted into the network. If the corresponding
calculation amount is too large, the computer will not be able to load it. The training data must be
iterated many times in order to make the model converge, and the epoch size should be adjusted based
on the diversity of the data set. The data were divided into several smaller batch input networks for
training. Learning rate is the key to determine whether the model can converge. In order to optimize
the performance and training speed of the network model, the main parameters of the model that fit the
current application scenario were determined after many experiments. The main parameters of Mask
R-CNN model are shown in Table 6. Based on TensorFlow, Keras and Anaconda deep learning libraries,
we used a NVIDIA GeForce GTX 1060 with a single GPU to train and generate a recognition model.

Table 6. Main parameter information of the model.

Parameter Values Parameter Values
GPU_COUNT 1 TRAIN_ROIS_PER_IMAG 200
IMAGES_PER_GPU 1 MAX_GT_INSTANCES 200
BACKBONE ResNet DETECTION_MAX_INSTANCES 200

BACKBONE_STRIDES 4,8,16,32,64) BATCH SIZE 1

NUM_CLASSES 2 EPOCHS 30

RPN_ANCHOR_SCALES (32, 64,128, 256, 512) LEARNING_RATE 0.0001
RPN_ANCHOR_RATIOS 05,1,2) LEARNING_MOMENTUM 0.9

RPN_NMS_THRESHOLD 0.7 WEIGHT_DECAY 0.0001

4.3. Water Recognition Results

For remote sensing water data extraction, aiming at different times, different sensors and different
resolutions of remote sensing images, the traditional methods of water extraction must determine
different optimal thresholds, select different regions of interest and provide different classification rules
manually. The generalization effect of the method must be improved. The water object recognition
method based on Mask R-CNN described in this paper can automatically extract water body data from
different remote sensing images without manual intervention. In order to verify the generalization
ability of this method, four kinds of multi-source and multi-temporal image data were selected for a
generalization test. The result of water body recognition from the image is shown in Figure 13 and the
precision is shown in Table 7.

Based on the results shown in Figure 13, we found that the Mask R-CNN method proposed in this
paper can achieve better recognition results for four different remote sensing images with different
morphological characteristics. This proves the effectiveness of the method.

Table 7 shows the water recognition accuracy of the Mask R-CNN model that had trained with
four different datasets at the object levels in four different test areas. The results shown in Figure 13,
indicate that the recognition of water bodies was best when the training data and test data were from
the same remote sensing image dataset. The average precision of four images was 0.85 and the average
recall rate was 0.97. Through the cross validation of the four different image training models, we
found that the recognition results were worse when the training data and test data were from the same
remote sensing image, but they still achieved 0.80 average precision and 0.90 average recall rate, which
proves the generalization ability of this method.
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Table 7. Water recognition accuracy of the Mask R-CNN model trained with four different datasets at
the object levels in four different test area.

Training Test Actual  Prediction Match  Precision  Recall
WV2014 121 125 118 09440 09752
WV2017 121 123 115 09350 09504
WV-2014 paoie 150 157 131 08344 08733
GF2018 150 156 130 08333 0.8667
WV2014 121 139 116 08345 09587
wv2017 121 138 117 0.8478 09669
WV-2017 Gpoote 150 169 133 07870  0.8867
GF2018 150 171 131 07661  0.8733
WV2014 121 136 104 07647  0.8595
croote  WYV20U7 121 137 105 07664 08678
- GF2016 150 179 145 08101 09667
GF2018 150 180 143 07944 09533
WV2014 121 138 104 07536  0.8595
Croors  WY2017 121 139 105 07554  0.8678
- GF2016 150 182 140 07692 09333
GF2018 150 181 143 07901 09533

\'

(b) WV-2017

Figure 13. Cont.
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(d) GF-2018

Figure 13. Examples of water recognition results of the Mask R-CNN model trained by WV-2014
(a), WV-2017 (b), GF-2016 (c) and GF-2018 (d) datasets. From top to bottom: image, label, water
recognition results. From left to right: water body recognition results based on different morphological
characteristics of corresponding data sets.

The water body recognition experiments were designed to evaluate object detection performance
using four multi-source and multi-temporal remote sensing images of water bodies with different
morphological characteristics. Five methods, Cart, SVM, KNN, Random Tree and Mask R-CNN were
used for comparison. Based on the water recognition results shown in Figure 14 and the recognition
accuracy of the different methods in the four different test areas of Table 8, when the traditional machine
learning method was used to recognize water bodies, the recognition effect was degraded by building
shadows in urban areas and vegetation shadows in suburban areas. This led to false detections and
reduced accuracy of the recognition results. In contrast, the Mask R-CNN not only realized the image
recognition of a water body area and its segmentation, but also minimized the influence of the building
and vegetation shadows.

The above table shows that compared with the Cart, SVM, K-nearest neighbor method and
Random Trees method, the Mask R-CNN based automatic water extraction method proposed in this
paper had the highest accuracy, followed by the Random Trees method, KNN and SVM. Cart was the
least effective. The region-based model is a special CNN structure, which detects objects by predicting
a bounding box of each object, developed for pixel-wise semantic segmentation and object detection.
In this paper, the most representative Mask R-CNN in the current field was used as the basic model.
We propose a Mask R-CNN method for high-resolution remote sensing image water body recognition.
Its unique model structure can extract the spatial and spectral features of remote sensing images at
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multiple levels. The traditional machine learning methods are all shallow learning models, so it is
difficult to extract the deep features of remote sensing images.

Table 8. Water recognition accuracy of different methods in four different test areas.

Datasets Index Cart SVM KNN Random Trees Mask R-CNN
Actual 121 121 121 121 121
Prediction 127 127 126 125 125
WV-2014 Match 113 114 116 117 118
Precision 0.8898 0.8976 0.9206 0.9360 0.9440
Recall 0.9339 0.9421 0.9587 0.9669 0.9752
Actual 121 121 121 121 121
Prediction 135 136 137 137 138
WV-2017 Match 112 113 115 116 117
Precision 0.8296 0.8309 0.8394 0.8467 0.8478
Recall 0.9256 0.9339 0.9504 0.9587 0.9669
Actual 150 150 150 150 150
Prediction 177 179 180 179 179
GF-2016 Match 140 142 143 146 145
Precision 0.7910 0.7933 0.7944 0.8156 0.8101
Recall 0.9333 0.9467 0.9533 0.9733 0.9667
Actual 150
Prediction 178
GF-2018 Match 137

Precision 0.7697
Recall 0.9133

Average  Precision 0.8200
Accuracy Recall 0.9265

(a) WV-2014

Figure 14. Cont.
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(b) WV-2017

(c) GF-2016
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Figure 14. Examples of water recognition results of different methods. From left to right: original
image, masks, water recognition results of the Mask R-CNN, Cart, SVM, KNN and Random Trees;
From top to bottom: water recognition results of different datasets: (a) WV-2014, (b) WV-2017, (c)
GF-2016 and (d) GF-2018.

5. Conclusions

In order to overcome the problems of poor automation, low efficiency and poor generalization
in the routine remote sensing image water extraction task, we built a region-based solution network
structure based on Mask R-CNN that was suitable for HSRRSI water recognition and realized the
object-based recognition and automatic extraction of water bodies. It improves the timeliness of water
data extraction, provides technical support for the real-time monitoring of surface water and provides
data support for water related research.

Based on the World View-3 images and GF-2 images of Tongzhou New Town of Beijing, we applied
the modified structure of the Mask R-CNN model trained with four different datasets in order to
conduct the experiments for object recognition of water bodies. The experimental results showed
that the proposed method produced satisfactory effects for water recognition in four types of remote
sensing images, concentrated in the remote sensing of large water bodies (such as lakes, rivers, etc.)
and small water bodies (such as paddy fields, small tributaries, etc.). Both could better extract the
range of water bodies. In addition, through the cross validation of the four-image training model, even
if the training area was different from the test area, the method of this study still showed satisfactory
results and strong generalization ability.

We used deep learning to perform the object recognition of urban water bodies in multi-source and
multi-temporal HSRRSI. This method is completely data-driven and does not require prior knowledge.
The experimental data for this study came from satellite images. For the recognition requirements
of other data sources, we could also use the method proposed in this paper as a paradigm. There is
still a long way to go to meet the standards of surveying and mapping products. Determining how to
make active intelligent extraction and vector map construction for complex scene water bodies covered
by the whole space, and then to continuously monitor and update with observation accumulation
will be more challenging in the current research field. With respect to managing water resources, this
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method can also be extended to the rapid data analysis of flooding and other thematic information.
Determining how to combine these achievements with digital terrain models to produce volumetric
estimates based on inundated topography would be worth further study. These issues will be studied
in our future work.
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