NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Datasets
3.2. Satellite Data
3.3. Spectral Libraries
3.4. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CE | Common Era |
ELA | Egesen–LIA alpine (sensu [63]) deglaciated belt |
ELN | Egesen–LIA non-alpine (sensu [63]) deglaciated belt |
ka | kilo annum |
LIA | Little Ice Age |
LR | LIA–Recent alpine (sensu [63]) deglaciated belt |
NDVI | Normalized Difference Vegetation Index |
OLI | Operational Land Imager |
SCE | Snow Covered Extent |
TM | Thematic Mapper |
References
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; p. 630. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; p. 1170. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Beniston, M.; Diaz, H.; Bradley, R. Climatic change at high elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.; Diaz, H.F.; Baraer, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Böhm, R.; Auer, I.; Brunetti, M.; Maugeri, M.; Nanni, T.; Schöner, W. Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int. J. Climatol. 2001, 21, 1779–1801. [Google Scholar] [CrossRef]
- Auer, I.; Böhm, R.; Jurković, A.; Orlik, A.; Potzmann, R.; Schöner, W.; Ungersböck, M.; Brunetti, M.; Nanni, T.; Maugeri, M.; et al. A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002. Int. J. Climatol. 2005, 25, 139–166. [Google Scholar] [CrossRef]
- Brunetti, M.; Lentini, G.; Maugeri, M.; Nanni, T.; Auer, I.; Böhm, R.; Schöner, W. Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int. J. Climatol. 2009, 29, 2197–2225. [Google Scholar] [CrossRef]
- Sommer, C.; Malz, P.; Seehaus, T.C.; Lippl, S.; Zemp, M.; Braun, M.H. Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century. Nat. Commun. 2020, 11, 3209. [Google Scholar] [CrossRef] [PubMed]
- WGMS; NSIDC. World Glacier Inventory, Version 1. In Technical Report; World Glacier Monitoring Service: Boulder, CO, USA, 2012. [Google Scholar] [CrossRef]
- Oerlemans, J. Glaciers and Climate Change; CRC Press, Tylor and Francis Group: Rotterdam, The Netherlands, 2001; p. 160. [Google Scholar]
- Oerlemans, J. Extracting a Climate Signal from 169 Glacier Records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemp, M.; Frauenfelder, R.; Haeberli, W.; Hoelzle, M. Worldwide glacier mass balance measurements: General trends and first results of the extraordinary year 2003 in Central Europe. Data Glaciol. Stud. 2005, 99, 3–12. [Google Scholar]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.; Clague, J.; Vuille, M.; Buytaert, W.; Cayan, D.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Information from Paleoclimate Archives. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 383–464. [Google Scholar] [CrossRef]
- Jones, P.D.; Mann, M.E. Climate over past millennia. Rev. Geophys. 2004, 42, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Owens, M.J.; Lockwood, M.; Hawkins, E.; Usoskin, I.G.; Jones, G.S.; Barnard, L.; Schurer, A.; Fasullo, J. The Maunder minimum and the Little Ice Age: An update from recent reconstructions and climate simulations. J. Space Weather Space Clim. 2017, 7, A33. [Google Scholar] [CrossRef]
- Baroni, C.; Casale, S.; Salvatore, M.C.; Ivy-Ochs, S.; Christl, M.; Carturan, L.; Seppi, R.; Carton, A. Double response of glaciers in the Upper Peio Valley (Rhaetian Alps, Italy) to the Younger Dryas climatic deterioration. Boreas 2017, 46, 783–798. [Google Scholar] [CrossRef]
- Baroni, C.; Carton, A. Geomorphology of the upper Val di Genova (Adamello Group, Central Alps. Geogr. Fis. Din. Quat. 1996, 19, 3–17. [Google Scholar]
- Ivy-Ochs, S.; Kerschner, H.; Maisch, M.; Christl, M.; Kubik, P.W.; Schlüchter, C. Latest Pleistocene and Holocene glacier variations in the European Alps. Quat. Sci. Rev. 2009, 28, 2137–2149. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.M.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; Fickert, T.; Schwaizer, G.; Patzelt, G.; Groß, G. Vegetation dynamics in Alpine glacier forelands tackled from space. Sci. Rep. 2019, 9, 13918. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2022; p. 896. [Google Scholar] [CrossRef]
- Rumpf, S.B.; Gravey, M.; Brönnimann, O.; Luoto, M.; Cianfrani, C.; Mariethoz, G.; Guisan, A. From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science 2022, 376, 1119–1122. [Google Scholar] [CrossRef]
- Gentili, R.; Baroni, C.; Panigada, C.; Rossini, M.; Tagliabue, G.; Armiraglio, S.; Citterio, S.; Carton, A.; Salvatore, M.C. Glacier shrinkage and slope processes create habitat at high elevation and microrefugia across treeline for alpine plants during warm stages. Catena 2020, 193, 104626. [Google Scholar] [CrossRef]
- Global Climate Observing System (GCOS). The Status of the Global Climate Observing System 2021: The GCOS Status Report (GCOS-240); World Meteorological Organization (WMO): Geneva, Switzerland, 2021; p. 384. [Google Scholar]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Hohensinner, S.; Atzler, U.; Fischer, A.; Schwaizer, G.; Helfricht, K. Tracing the Long-Term Evolution of Land Cover in an Alpine Valley 1820–2015 in the Light of Climate, Glacier and Land Use Changes. Front. Environ. Sci. 2021, 9, 683397. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Kumar, R.; Nath, A.J.; Nath, A.; Sahu, N.; Pandey, R. Landsat-based multi-decadal spatio-temporal assessment of the vegetation greening and browning trend in the Eastern Indian Himalayan Region. Remote Sens. Appl. Soc. Environ. 2022, 25, 100695. [Google Scholar] [CrossRef]
- Verhoeven, V.B.; Dedoussi, I.C. Annual satellite-based NDVI-derived land cover of Europe for 2001–2019. J. Environ. Manag. 2022, 302, 113917. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Galvagno, M.; Isabellon, M.; Bayle, A.; Choler, P.; Carlson, B.Z.; Gabellani, S.; Morra di Cella, U.; Migliavacca, M. Climatic Drivers of Greening Trends in the Alps. Remote Sens. 2019, 11, 2527. [Google Scholar] [CrossRef] [Green Version]
- Carlson, B.Z.; Corona, M.C.; Dentant, C.; Bonet, R.; Thuiller, W.; Choler, P. Observed long-term greening of alpine vegetation—A case study in the French Alps. Environ. Res. Lett. 2017, 12, 114006. [Google Scholar] [CrossRef]
- Choler, P.; Bayle, A.; Carlson, B.Z.; Randin, C.; Filippa, G.; Cremonese, E. The tempo of greening in the European Alps: Spatial variations on a common theme. Glob. Chang. Biol. 2021, 27, 5614–5628. [Google Scholar] [CrossRef] [PubMed]
- Knoflach, B.; Ramskogler, K.; Talluto, M.; Hofmeister, F.; Haas, F.; Heckmann, T.; Pfeiffer, M.; Piermattei, L.; Ressl, C.; Wimmer, M.H.; et al. Modelling of Vegetation Dynamics from Satellite Time Series to Determine Proglacial Primary Succession in the Course of Global Warming—A Case Study in the Upper Martell Valley (Eastern Italian Alps). Remote Sens. 2021, 13, 4450. [Google Scholar] [CrossRef]
- Marazzi, S. Atlante Orografico delle Alpi: SOIUSA: Suddivisione Orografica Internazionale Unificata del Sistema Alpino; Quaderni di Cultura Alpina; Priuli & Verlucca: Pavone Canavese, Italy, 2005; p. 416. [Google Scholar]
- Baroni, C.; Gennaro, S.; Salvatore, M.C.; Ivy-Ochs, S.; Christl, M.; Cerrato, R.; Orombelli, G. Last Lateglacial glacier advance in the Gran Paradiso Group reveals relatively drier climatic conditions established in the Western Alps since at least the Younger Dryas. Quat. Sci. Rev. 2021, 255, 106815. [Google Scholar] [CrossRef]
- Salvatore, M.C.; Zanoner, T.; Baroni, C.; Carton, A.; Banchieri, F.A.; Viani, C.; Giardino, M.; Perotti, L. The state of Italian glaciers: A snapshot of the 2006–2007 hydrological period. Geogr. Fis. Din. Quat. 2015, 38, 175–198. [Google Scholar] [CrossRef]
- Gennaro, S. Glaciers of the Gran Paradiso Group as Indicator of Lateglacial and Holocene Climatic Changes in the Western Alps. Ph.D. Thesis, University of Pisa, Pisa, Italy, 2020. [Google Scholar]
- Le Bayon, B.; Ballèvre, M. Deformation history of a subducted continental crust (Gran Paradiso, Western Alps): Continuing crustal shortening during exhumation. J. Struct. Geol. 2006, 28, 793–815. [Google Scholar] [CrossRef]
- Dal Piaz, G.V.; Gianotti, F.; Monopoli, B.; Pennacchioni, G.; Tartarotti, P.; Schiavo, A. Carta Geologica d’Italia alla Scala 1:50,000 e Note Illustrative. Foglio 91 Chatillon; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2008; p. 153.
- Beltrando, M.; Compagnoni, R.; Lombardo, B. (Ultra-) High-pressure metamorphism and orogenesis: An Alpine perspective. Gondwana Res. 2010, 18, 147–166. [Google Scholar] [CrossRef]
- Polino, R.; Bonetto, F.; Carraro, F.; Gianotti, F.; Gouffon, Y.; Malusà, M.; Martin, S.; Perello, P.; Schiavo, A. Carta Geologica d’Italia alla Scala 1:50,000 e Note Illustrative. Foglio 90 Aosta; ISPRA—Istituto Superiore per la Protezione e la Ricerca Ambientale: Rome, Italy, 2015; p. 148.
- Elter, G. Carte Géologique de la Vallée d’Aoste, Échelle 1:100.000 [Geological Map of the Aosta Valley]; C.N.R. Centro di studio sui problemi dell’Orogeno delle Alpi occidentali, Torino. S.E.L.C.A.: Firenze, Italy, 1987. [Google Scholar]
- Gasco, I.; Gattiglio, M.; Borghi, A. Structural evolution of different tectonic units across the Austroalpine–Penninic boundary in the middle Orco Valley (Western Italian Alps). J. Struct. Geol. 2009, 31, 301–314. [Google Scholar] [CrossRef]
- Manzotti, P.; Le Carlier De Veslud, C.; Le Bayon, B.; Ballèvre, M. Petro-structural map of the Money Unit (Gran Paradiso Massif, Valnontey valley, Western Alps). J. Maps 2014, 10, 324–340. [Google Scholar] [CrossRef] [Green Version]
- Piana, F.; Fioraso, G.; Irace, A.; Mosca, P.; D’Atri, A.; Barale, L.; Falletti, P.; Monegato, G.; Morelli, M.; Tallone, S.; et al. Geology of Piemonte region (NW Italy, Alps–Apennines interference zone). J. Maps 2017, 13, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, M.C.; Bertocchini, N.; Gennaro, S.; Baroni, C. Geomorphological Map of Valnontey (Gran Paradiso Group, Western Alps, Italy). Geogr. Fis. Din. Quat. 2021, 44, 197–213. [Google Scholar] [CrossRef]
- Peel, M.; Finlayson, B.; McMahon, T. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isotta, F.A.; Frei, C.; Weilguni, V.; Perčec Tadić, M.; Lassègues, P.; Rudolf, B.; Pavan, V.; Cacciamani, C.; Antolini, G.; Ratto, S.M.; et al. The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int. J. Climatol. 2014, 34, 1657–1675. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Monti, F.; Nanni, T. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 2006, 26, 345–381. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Regional Climate Change and Adaptation: The Alps Facing the Challenge of Changing Water Resources; EEA: Copenhagen, Denmark, 2009; p. 148. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeri, M.; Nanni, T.; Simolo, C.; Spinoni, J. High-resolution temperature climatology for Italy: Interpolation method intercomparison. Int. J. Climatol. 2014, 34, 1278–1296. [Google Scholar] [CrossRef] [Green Version]
- Poussin, C.; Guigoz, Y.; Palazzi, E.; Terzago, S.; Chatenoux, B.; Giuliani, G. Snow Cover Evolution in the Gran Paradiso National Park, Italian Alps, Using the Earth Observation Data Cube. Data 2019, 4, 138. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffl, C.; Mallaun, M.; Mayer, R.; Erschbamer, B. Vegetation succession pattern and diversity changes in a Glacier Valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 2006, 38, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, S.; Steiner, L.; Schweiger, A.H.; Chiarucci, A.; Beierkuhnlein, C. Optimizing sampling effort and information content of biodiversity surveys: A case study of alpine grassland. Ecol. Inform. 2019, 51, 112–120. [Google Scholar] [CrossRef]
- Mainetti, A.; D’Amico, M.; Probo, M.; Quaglia, E.; Ravetto Enri, S.; Celi, L.; Lonati, M. Successional Herbaceous Species Affect Soil Processes in a High-Elevation Alpine Proglacial Chronosequence. Front. Environ. Sci. 2021, 8, 615499. [Google Scholar] [CrossRef]
- Vanuzzo, C. The glacier retreat in Valle D’Aosta (Western Italian Alps) from the Little Ice Age to the second half of the 20th century: Linear, areal, volumetric and equilibrium line altitude changes. Geogr. Fis. Din. Quat. 2001, 24, 99–113. [Google Scholar]
- Baroni, C.; Salvatore, M.C.; Alderighi, L.; Gennaro, S.; Zanoner, T.; Carton, A.; Carturan, L.; Zorzi, M.; Giardino, M.; Bertotto, S.; et al. The changing Italian glaciers. In NextData Project Final Volume—Climate and Environmental Changes in the Italian Mountains; Donato, A., Palazzi, E., Eds.; CNR–IGG: Pisa, Italy, 2019; Chapter 8; p. 272. [Google Scholar]
- Baroni, C.; Salvatore, M.C.; Alderighi, L.; Gennaro, S. Italian glaciers, sensitive sentinels of climate change. In The Researches of the University of Pisa in the Field of the Effects of Climate Change. Agrochimica; Lorenzini, G., Ed.; Pisa University Press: Pisa, Italy, 2019; pp. 213–220. [Google Scholar]
- Testolin, R.; Attorre, F.; Jiménez-Alfaro, B. Global distribution and bioclimatic characterization of alpine biomes. Ecography 2020, 43, 779–788. [Google Scholar] [CrossRef] [Green Version]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.; Richardson, W. Preprocessing transformations and their effects on multispectral recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131. [Google Scholar]
- Gates, D.M. Biophysical Ecology; Springer: New York, NY, USA, 1980; p. 611. [Google Scholar]
- Baldridge, A.; Hook, S.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Salvatori, R.; Salzano, R.; Valt, M.; Cerrato, R.; Ghergo, S. The Collection of Hyperspectral Measurements on Snow and Ice Covers in Polar Regions (SISpec 2.0). Remote Sens. 2022, 14, 2213. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. Spectral Library Version 7. In Technical Report; USGS: Reston, VA, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Unger, S.; Vargas, S.; May, J.; Oberbauer, S. Arctic Moss Spectral Reflectance Desiccation Experiment From Samples Collected in Northern Alaska. Data Set. From the Ecological Spectral Information System (EcoSIS). Available online: http://ecosis.org (accessed on 29 July 2023).
- Lamchin, M.; Lee, W.K.; Jeon, S.W.; Wang, S.W.; Lim, C.H.; Song, C.; Sung, M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef]
- Lamchin, M.; Wang, S.W.; Lim, C.H.; Ochir, A.; Pavel, U.; Gebru, B.M.; Choi, Y.; Jeon, S.W.; Lee, W.K. Understanding global spatio-temporal trends and the relationship between vegetation greenness and climate factors by land cover during 1982–2014. Glob. Ecol. Conserv. 2020, 24, e01299. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Routledge: New York, NY, USA, 2002; p. 536. [Google Scholar] [CrossRef]
- Wan, K.X.; Vidavsky, I.; Gross, M.L. Comparing similar spectra: From similarity index to spectral contrast angle. J. Am. Soc. Mass Spectrom. 2002, 13, 85–88. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 29 July 2023).
- Filippa, G.; Cremonese, E.; Galvagno, M.; Bayle, A.; Choler, P.; Bassignana, M.; Piccot, A.; Poggio, L.; Oddi, L.; Gascoin, S.; et al. On the distribution and productivity of mountain grasslands in the Gran Paradiso National Park, NW Italy: A remote sensing approach. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102718. [Google Scholar] [CrossRef]
- Cannone, N.; Sgorbati, S.; Guglielmin, M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 2007, 5, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Zu, J.; Zhang, Y.; Cong, N.; Liu, Y.; Chen, N. Impacts of snow cover duration on vegetation spring phenology over the Tibetan Plateau. J. Plant Ecol. 2019, 12, 583–592. [Google Scholar] [CrossRef]
- Carrer, M.; Dibona, R.; Prendin, A.L.; Brunetti, M. Recent waning snowpack in the Alps is unprecedented in the last six centuries. Nat. Clim. Chang. 2023, 13, 155–160. [Google Scholar] [CrossRef]
- Cerrato, R.; Salvatore, M.C.; Brunetti, M.; Coppola, A.; Baroni, C. Dendroclimatic relevance of “Bosco Antico”, the most ancient living European larch wood in the Southern Rhaetian Alps (Italy). Geogr. Fis. Din. Quat. 2018, 41, 35–49. [Google Scholar] [CrossRef]
- Coppola, A.; Leonelli, G.; Salvatore, M.C.; Pelfini, M.; Baroni, C. Tree-ring- Based summer mean temperature variations in the Adamello-Presanella Group (Italian Central Alps), 1610–2008 AD. Clim. Past 2013, 9, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Leonelli, G.; Coppola, A.; Baroni, C.; Salvatore, M.C.; Maugeri, M.; Brunetti, M.; Pelfini, M. Multispecies dendroclimatic reconstructions of summer temperature in the European Alps enhanced by trees highly sensitive to temperature. Clim. Chang. 2016, 137, 275–291. [Google Scholar] [CrossRef]
- Leonelli, G.; Coppola, A.; Salvatore, M.C.; Baroni, C.; Battipaglia, G.; Gentilesca, T.; Ripullone, F.; Borghetti, M.; Conte, E.; Tognetti, R.; et al. Climate signals in a multispecies tree-ring network from central and southern Italy and reconstruction of the late summer temperatures since the early 1700s. Clim. Past 2017, 13, 1451–1471. [Google Scholar] [CrossRef] [Green Version]
- Carrer, M.; Nola, P.; Edouard, J.L.; Motta, R.; Urbinati, C. Regional variability of climate growth relationships in Pinus cembra high elevation forests in the Alps. J. Ecol. 2007, 95, 1072–1083. [Google Scholar] [CrossRef]
- Cerrato, R.; Salvatore, M.C.; Gunnarson, B.E.; Linderholm, H.W.; Carturan, L.; Brunetti, M.; De Blasi, F.; Baroni, C. A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy. Dendrochronologia 2019, 53, 22–31. [Google Scholar] [CrossRef]
- Saulnier, M.; Edouard, J.L.; Corona, C.; Guibal, F. Climate/growth relationships in a Pinus cembra high-elevation network in the Southern French Alps. Ann. For. Sci. 2011, 68, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Cerrato, R.; Salvatore, M.C.; Carrer, M.; Brunetti, M.; Baroni, C. Blue intensity of Swiss stone pine as a high-frequency temperature proxy in the Alps. Eur. J. For. Res. 2023, 142, 933–948. [Google Scholar] [CrossRef]
- Baroni, C.; Bondesan, A.; Carturan, L.; Chiarle, M. Annual glaciological survey of Italian Glaciers (2019). Geogr. Fis. Din. Quat. 2020, 43, 45–142. [Google Scholar]
- Carturan, L.; Rastner, P.; Paul, F. On the disequilibrium response and climate change vulnerability of the mass-balance glaciers in the Alps. J. Glaciol. 2020, 66, 1034–1050. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
Time Span | Ecosystem Belt 1 | Total Area [km2] | Elevation Median [m] | Elevation Range 2 [m] | |
---|---|---|---|---|---|
ELN | Egesen–LIA | non-alpine | 2183 | 1742 | |
(13.8 ± 0.8 ka–1820 CE ca.) | 2359 | ||||
ELA | Egesen–LIA | alpine | 2680 | 2407 | |
(13.8 ± 0.8 ka–1820 CE ca.) | 3036 | ||||
LR | LIA–Recent | alpine | 2866 | 2380 | |
(~1820–1989 CE) | 3248 |
ELN | ELA | LR 1 | ||||
---|---|---|---|---|---|---|
N | * | * | * | * | ||
E | † | † | * | * | ||
S | † | † | ||||
W | † | † | * | * |
Elevation Class (m a.s.l.) | CLC90 Class | ELN | ELA | LR 1 | |||
---|---|---|---|---|---|---|---|
S | S | S | |||||
2400–2600 | 3.3.2 | * | * | ||||
3.3.3 | – | – | |||||
2800–3000 | 3.3.2 | * | * | † | † | * | * |
3.3.3 | – | – | † | † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gennaro, S.; Cerrato, R.; Salvatore, M.C.; Salzano, R.; Salvatori, R.; Baroni, C. NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps). Remote Sens. 2023, 15, 3847. https://doi.org/10.3390/rs15153847
Gennaro S, Cerrato R, Salvatore MC, Salzano R, Salvatori R, Baroni C. NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps). Remote Sensing. 2023; 15(15):3847. https://doi.org/10.3390/rs15153847
Chicago/Turabian StyleGennaro, Simona, Riccardo Cerrato, Maria Cristina Salvatore, Roberto Salzano, Rosamaria Salvatori, and Carlo Baroni. 2023. "NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)" Remote Sensing 15, no. 15: 3847. https://doi.org/10.3390/rs15153847
APA StyleGennaro, S., Cerrato, R., Salvatore, M. C., Salzano, R., Salvatori, R., & Baroni, C. (2023). NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps). Remote Sensing, 15(15), 3847. https://doi.org/10.3390/rs15153847