The Sky Is Not the Limit: Use of a Spray Drone for the Precise Application of Herbicide and Control of an Invasive Plant in Managed Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Phenology of Lepidium latifolium
2.3. Invasive Species Detection
2.4. Herbicide Application
2.5. Treatment Efficacy
3. Results
3.1. Mapping Extent Analysis
3.2. Area Treated
3.3. Spray Drone Efficacy Analysis
3.4. Assessment of Drift
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; D’Antonio, C.; Loope, L.L.; Rejmánek, M.; Westbrooks, R. Introduced Species: A significant component of human-caused global change. N. Z. J. Ecol. 1997, 21, 1–16. [Google Scholar]
- Houlahan, J.E.; Findlay, C.S. Effect of Invasive Plant Species on Temperate Wetland Plant Diversity. Conserv. Biol. 2004, 18, 1132–1138. [Google Scholar] [CrossRef]
- Vila, M.; Weiner, J. Are Invasive Plant Species Better Competitors than Native Plant Species? Evidence from Pair-Wise Experiments. Oikos 2004, 105, 229–238. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes. Crit. Rev. Plant Sci. 2004, 23, 431–452. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Weber, E.; Fischer, M. A Meta-Analysis of Trait Differences between Invasive and Non-Invasive Plant Species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Pritekel, C.; Whittemore-Olson, A.; Snow, N.; Moore, J.C. Impacts from Invasive Plant Species and Their Control on the Plant Community and Belowground Ecosystem at Rocky Mountain National Park, USA. Appl. Soil Ecol. 2006, 32, 132–141. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.R.; Barthman-Thompson, L.M.; Estrella, S.K.; Riley, M.K.; Trombley, S.N.; Rose, C.A.; Kelt, D.A.; Carraway, L. Demography of the Salt Marsh Harvest Mouse (Reithrodontomys raviventris halicoetes) and Associated Rodents in Tidal and Managed Wetlands. J. Mammal. 2020, 101, 129–142. [Google Scholar] [CrossRef]
- Chen, L. Invasive Plants in Coastal Wetlands: Patterns and Mechanisms. In Wetlands: Ecosystem Services, Restoration and Wise Use; Springer: Berlin/Heidelberg, Germany, 2019; Volume 238, pp. 97–128. [Google Scholar]
- Moyle, P.B.; Manfree, A.D.; Fiedler, P.L. Suisun Marsh: Ecological History and Possible Futures; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 2014; ISBN 978-0-520-95732-9. [Google Scholar]
- Agha, M.; Yackulic, C.B.; Riley, M.K.; Peterson, B.; Todd, B.D. Brackish Tidal Marsh Management and the Ecology of a Declining Freshwater Turtle. Environ. Manag. 2020, 66, 644–653. [Google Scholar] [CrossRef]
- Casazza, M.L.; McDuie, F.; Jones, S.; Lorenz, A.A.; Overton, C.T.; Yee, J.; Feldheim, C.L.; Ackerman, J.T.; Thorne, K.M. Waterfowl Use of Wetland Habitats Informs Wetland Restoration Designs for Multi-Species Benefits. J. Appl. Ecol. 2021, 58, 1910–1920. [Google Scholar] [CrossRef]
- Leininger, S.P.; Foin, T.C. Lepidium latifolium Reproductive Potential and Seed Dispersal along Salinity and Moisture Gradients. Biol. Invasions 2009, 11, 2351–2365. [Google Scholar] [CrossRef] [Green Version]
- Wigginton, R.D.; Kelso, M.A.; Grosholz, E.D. Time-Lagged Impacts of Extreme, Multi-Year Drought on Tidal Salt Marsh Plant Invasion. Ecosphere 2020, 11, e03155. [Google Scholar] [CrossRef]
- Reynolds, L.K.; Boyer, K.E. Perennial Pepperweed (Lepidium latifolium): Properties of Invaded Tidal Marshes. Invasive Plant Sci. Manag. 2010, 3, 130–138. [Google Scholar] [CrossRef]
- Blank, R.R. Amidohydrolase Activity, Soil N Status, and the Invasive Crucifer Lepidium latifolium. Plant Soil 2002, 239, 155–163. [Google Scholar] [CrossRef]
- Spautz, H.; Nur, N. Impacts of Non-Native Perennial Pepperweed (Lepidium latifolium) on Abundance, Distribution and Reproductive Success of San Francisco Bay Tidal Marsh Birds. PRBO Conserv. Sci. 2004, 1–90. [Google Scholar]
- Boyer, K.E.; Burdick, A.P. Control of Lepidium latifolium (Perennial Pepperweed) and Recovery of Native Plants in Tidal Marshes of the San Francisco Estuary. Wetl. Ecol. Manag. 2010, 18, 731–743. [Google Scholar] [CrossRef]
- Whitcraft, C.R.; Grewell, B.J. Evaluation of Perennial Pepperweed (Lepidium latifolium) Management in a Seasonal Wetland in the San Francisco Estuary Prior to Restoration of Tidal Hydrology. Wetl. Ecol. Manag. 2012, 20, 35–45. [Google Scholar] [CrossRef]
- Grewell, B.J.; Baye, P.R.; Fiedler, P.L. Shifting Mosaics: Vegetation of Suisun Marsh. In Suisun Marsh: Ecological History and Possible Futures; University of California Press: Berkeley, CA, USA, 2014; pp. 65–101. ISBN 978-0-520-95732-9. [Google Scholar]
- Kerr, D.W.; Hogle, I.B.; Ort, B.S.; Thornton, W.J. A Review of 15 Years of Spartina Management in the San Francisco Estuary. Biol. Invasions 2016, 18, 2247–2266. [Google Scholar] [CrossRef]
- Marrs, R.H.; Williams, C.T.; Frost, A.J.; Plant, R.A. Assessment of the Effects of Herbicide Spray Drift on a Range of Plant Species of Conservation Interest. Environ. Pollut. 1989, 59, 71–86. [Google Scholar] [CrossRef]
- Pimentel, D.; Lach, L.; Zuniga, R.; Morrison, D. Environmental and Economic Costs of Nonindigenous Species in the United States. BioScience 2000, 50, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Burn, A. Pesticide Buffer Zones for the Protection of Wildlife. Pest Manag. Sci. 2003, 59, 583–590. [Google Scholar] [CrossRef]
- Boutin, C. Herbicides: Non-Target Species Effects. In Encyclopedia of Environmental Management; CRC Press: Boca Raton, FL, USA, 2015; pp. 33–48. [Google Scholar]
- Shahbazi, M.; Théau, J.; Ménard, P. Recent Applications of Unmanned Aerial Imagery in Natural Resource Management. GIScience Remote Sens. 2014, 51, 339–365. [Google Scholar] [CrossRef]
- Johnson, R.; Smith, K.; Wescott, K. Unmanned Aircraft System (UAS) Applications to Land and Natural Resource Management. Environ. Pract. 2015, 17, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Madden, M.; Jordan, T.; Cotten, D.; O’Hare, N.; Pasqua, A.; Bernardes, S. The Future of Unmanned Aerial Systems for Monitoring Natural and Cultural Resources. Photogramm. Week 2015, 15, 369–385. [Google Scholar]
- Louargant, M.; Villette, S.; Jones, G.; Vigneau, N.; Paoli, J.N.; Gée, C. Weed Detection by UAV: Simulation of the Impact of Spectral Mixing in Multispectral Images. Precis. Agric. 2017, 18, 932–951. [Google Scholar] [CrossRef]
- Jeziorska, J. UAS for Wetland Mapping and Hydrological Modeling. Remote Sens. 2019, 11, 1997. [Google Scholar] [CrossRef] [Green Version]
- Gallego, D.; Sarasola, J.H. Using Drones to Reduce Human Disturbance While Monitoring Breeding Status of an Endangered Raptor. Remote Sens. Ecol. Conserv. 2021, 7, 550–561. [Google Scholar] [CrossRef]
- Robinson, J.M.; Harrison, P.A.; Mavoa, S.; Breed, M.F. Existing and emerging uses of drones in restoration ecology. Methods Ecol. Evol. 2022, 13, 1899–1911. [Google Scholar] [CrossRef]
- Yallapa, D.; Veerangouda, M.; Maski, D.; Palled, V.; Bheemanna, M. Development and evaluation of drone mounted sprayer for pesticide applications to crops. In Proceedings of the GHTC 2017—IEEE Global Humanitarian Technology Conference, San Jose, CA, USA, 19–22 October 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Carrasco-Escobar, G.; Moreno, M.; Fornace, K.; Herrera-Varela, M.; Manrique, E.; Conn, J.E. The use of drones for mosquito surveillance and control. Parasites Vectors 2022, 15, 473. [Google Scholar] [CrossRef] [PubMed]
- Mogili, U.M.R.; Deepak, B.B.V.L. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Li, X.; Giles, D.K.; Niederholzer, F.J.; Andaloro, J.T.; Lang, E.B.; Watson, L.J. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Manag. Sci. 2020, 77, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Xionghui, H.; Bonds, J.; Herbst, A.; Langenakens, J. Recent development of unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Ahmad Suhaizi, M.; Azmi, Y.; Norida, M.; Mohamad Saiful, A. Evaluation of the Spraying Dispersion and Uniformity Using Drone in Rice Field Application. In Proceedings of the 2018 MSAE Conference, Serdang, Malaysia, 7–8 February 2018; pp. 967–978. [Google Scholar]
- Wang, G.; Lan, Y.; Yuan, H.; Qi, H.; Chen, P.; Ouyang, F.; Han, Y. Comparison of Spray Deposition, Control Efficacy on Wheat Aphids and Working Efficiency in the Wheat Field of the Unmanned Aerial Vehicle with Boom Sprayer and Two Conventional Knapsack Sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Singh, V.; Latheef, M.A.; Bagavathiannan, M. Spray deposition on weeds (Palmer Amarath and Morningglory) from a remotely piloted aerial application system and backpack sprayer. Drones 2020, 4, 59. [Google Scholar] [CrossRef]
- Roslim, M.H.M.; Juraimi, A.S.; Che’ya, N.N.; Sulaiman, N.; Manaf, M.N.H.A.; Ramli, Z.; Motmainna, M. Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy 2021, 11, 1809. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Li, W.; Yan, K.; Han, Y.; Zhang, Y.; Pawlowski, L.; Lan, Y. Progress in agricultural unmanned aerial vehicles (UAVs) applied in China and prospects for Poland. Agriculture 2022, 12, 397. [Google Scholar] [CrossRef]
- Eng, M.J.A.; Sehsah, E.M.E. Farm Machinery and Power Study on Helicopter Aerial Spraying Under Field Canola Conditions. Misr J. Agric. Eng. 2012, 29, 893–910. [Google Scholar] [CrossRef]
- Kettenring, K.M.; Adams, C.R. Lessons Learned from Invasive Plant Control Experiments: A Systematic Review and Meta-Analysis. J. Appl. Ecol. 2011, 48, 970–979. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.E.; Ustin, S.L. Spectral and physiological uniqueness of perennial pepperweed (Lepidium latifolium). Weed Sci. 2006, 54, 1051–1062. [Google Scholar] [CrossRef]
- Vanderhoof, M.; Holzman, B.A.; Rogers, C. Predicting the distribution of perennial pepperweed (Lepidium latifolium), San Francisco Bay area, California. Invasive Plant Sci. Manag. 2009, 2, 260–269. [Google Scholar] [CrossRef]
- Young, J.A.; Palmquist, D.E.; Blank, R.S.; Turner, C.E. Ecology and Control of Perennial Pepperweed (Lepidium latifolium L.). In Proceedings of the California Exotic Pest Plant Council Symposium ’95, Pacific Grove, CA, USA, 6–8 October 1995. [Google Scholar]
- Young, J.; Palmquist, D.; Blank, R. The Ecology and Control of Perennial Pepperweed (Lepidium latifolium L.). Weed Technol. 1998, 12, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Renz, M.; DiTomaso, J. Early season mowing improves the effectiveness of Chlorsulfuron and Glyphosate for control of perennial pepperweed (Lepidium latifolium). Weed Technol. 2006, 20, 32–36. [Google Scholar] [CrossRef]
- Young, J.A.; Turner, C.E.; James, L.F. Perennial Pepperweed. Rangelands 1995, 17, 121–123. [Google Scholar]
- Andrew, M.E.; Ustin, S.L. Habitat suitability modeling of an invasive plant with advanced remote sensing data. Divers. Distrib. 2009, 15, 627–640. [Google Scholar] [CrossRef]
- Martinez, B.; Reaser, J.K.; Dehgan, A.; Zamft, B.; Baisch, D.; McCormick, C.; Giordano, A.J.; Aicher, R.; Selbe, S. Technology innovation: Advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 2020, 22, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Reaser, J.K.; Burgiel, S.W.; Kirkey, J.; Brantley, K.A.; Veatch, S.D.; Burgos-Rodriguez, J. The early detection of and rapid response (EDRR) to invasive species: A conceptual framework and federal capacities assessment. Biol. Invasions 2020, 22, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.E.; Ustin, S.L. Effects of Microtopography and Hydrology on Phenology of an Invasive Herb. Ecography 2009, 32, 860–870. [Google Scholar] [CrossRef]
- Buffington, K.J.; Thorne, K.M.; Takekawa, J.Y.; Chappell, S.; Swift, T.; Feldheim, C.; Squellati, A.; Mardock, D.K. LEAN-Corrected DEM for Suisun Marsh: U.S. Geological Survey Data Release; U.S. Geological Survey: Washington, DC, USA, 2019. [CrossRef]
- Leading Edge Aerial Technologies. PrecisionVision 35 UAS Brochure V.2; Leading Edge Aerial Technologies: Daytona, Fl, USA, 2019. [Google Scholar]
- DuPont. DuPontTM Telar® XP Herbicide. Available online: www.dupont.com (accessed on 21 March 2023).
- Matthews, G.A. Pesticides Application Methods, 2nd ed.; Longman Scientific and Technical Publications: London, UK, 1992; 405p. [Google Scholar]
- Carlson, A.M.; Gorchov, D.L. Effects of Herbicide on the Invasive Biennial Alliaria Petiolata (Garlic Mustard) and Initial Responses of Native Plants in a Southwestern Ohio Forest. Restor. Ecol. 2004, 12, 559–567. [Google Scholar] [CrossRef]
- Douglass, C.H.; Nissen, S.J.; Kniss, A.R. Efficacy and Environmental Fate of Imazapyr from Directed Helicopter Applications Targeting Tamarix Species Infestations in Colorado. Pest Manag. Sci. 2016, 72, 379–387. [Google Scholar] [CrossRef]
- Shimeta, J.; Saint, L.; Verspaandonk, E.R.; Nugegoda, D.; Howe, S. Long-Term Ecological Consequences of Herbicide Treatment to Control the Invasive Grass, Spartina Anglica, in an Australian Saltmarsh. Estuar. Coast. Shelf Sci. 2016, 176, 58–66. [Google Scholar] [CrossRef]
- Bakacsy, L.; Bagi, I. Survival and Regeneration Ability of Clonal Common Milkweed (Asclepias syriaca L.) after a Single Herbicide Treatment in Natural Open Sand Grasslands. Sci. Rep. 2020, 10, 14222. [Google Scholar] [CrossRef] [PubMed]
- Kudsk, P.; Kristensen, J. Effect of Environmental Factors on Herbicide Performance. In Proceedings of the First International Weed Control Congress, Melbourne, Australia, 17–21 February 1992; pp. 173–186. [Google Scholar]
- American Society of Agricultural and Biological Engineers (ASABE). Spray Nozzle Classification by Droplet Spectra. 2020. Available online: www.mssoy.org (accessed on 14 March 2023).
- Egan, J.F.; Bohnenblust, E.; Goslee, S.; Mortensen, D.; Tooker, J. Herbicide Drift Can Affect Plant and Arthropod Communities. Agric. Ecosyst. Environ. 2014, 185, 77–87. [Google Scholar] [CrossRef]
- Ramsdale, B.K.; Messersmith, C.G. Drift-Reducing Nozzle Effects on Herbicide Performance 1. Weed Technol. 2001, 15, 453–460. [Google Scholar] [CrossRef]
- Chen, S.; Lan, Y.; Zhou, Z.; Ouyang, F.; Wang, G.; Huang, X.; Deng, X.; Cheng, S. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.C.; Parsons, R.G.; Barbe, G.; Patel, P.T.; Murphy, S. Drift Control and Buffer Zones for Helicopter Spraying of Bracken (Pteridium Aquilinum). Agric. Ecosyst. Environ. 2000, 79, 215–231. [Google Scholar] [CrossRef]
- Grant, S.; Perine, J.; Abi-Akar, F.; Lane, T.; Kent, B.; Mohler, C.; Scott, C.; Ritter, A. A wind-tunnel assessment of parameters that may impact spray drift during UAV pesticide application. Drones 2022, 6, 204. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, P.; Xu, W.; Chen, S.; Han, Y.; Lan, Y.; Wang, G. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution. Biosyst. Eng. 2022, 216, 32–45. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Association (NOAA). Global Surface Summary of the Day—San Francisco Bay Reserve, CA, USA. Available online: https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day (accessed on 20 March 2023).
- Vas, E.; Lescroël, A.; Duriez, O.; Boguszewski, G.; Grémillet, D. Approaching Birds with Drones: First Experiments and Ethical Guidelines. Biol. Lett. 2015, 11, 20140754. [Google Scholar] [CrossRef] [Green Version]
- Mulero-Pázmány, M.; Jenni-Eiermann, S.; Strebel, N.; Sattler, T.; Negro, J.J.; Tablado, Z. Unmanned Aircraft Systems as a New Source of Disturbance for Wildlife: A Systematic Review. PLoS ONE 2017, 12, e0178448. [Google Scholar] [CrossRef] [Green Version]
- Lyons, M.; Brandis, K.; Callaghan, C.; McCann, J.; Mills, C.; Ryall, S.; Kingsford, R. Bird Interactions with Drones, from Individuals to Large Colonies. Aust. Field Ornithol. 2017, 35, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Barnas, A.; Chabot, D.; Hodgson, A.J.; Johnston, D.W.; Bird, D.M.; Ellis-Felege, S.N. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 2020, 8, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Bech-Hansen, M.; Kallehauge, R.M.; Lauritzen, J.M.S.; Sørensen, M.H.; Laubek, B.; Jensen, L.F.; Pertoldi, C.; Bruhn, D. Evaluation of Disturbance Effect on Geese Caused by an Approaching Unmanned Aerial Vehicle. Bird Conserv. Int. 2020, 30, 169–175. [Google Scholar] [CrossRef]
- Mo, M.; Bonatakis, K. An examination of trends in the growing scientific literature on approaching wildlife with drones. Drone Syst. Appl. 2022, 10, 111–139. [Google Scholar] [CrossRef]
- Schad, L.; Fischer, J. Opportunities and risks in the use of drones for studying animal behavior. Methods Ecol. Evol. 2022, 1–9. [Google Scholar] [CrossRef]
- Ditmer, M.A.; Vincent, J.B.; Werden, L.K.; Tanner, J.C.; Laske, T.G.; Iaizzo, P.A.; Garshelis, D.L.; Fieberg, J.R. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Curr. Biol. 2015, 25, 2278–2283. [Google Scholar] [CrossRef] [Green Version]
- Brunton, E.; Bolin, J.; Leon, J.; Burnett, S. Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring. Drones 2019, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Hagani, J.S.; Takekawa, J.T.; Chappell, S.C.; Richelle, L.T.; Ernst, A.R.; Kettenring, K.M. A remote sensing approach to assess the historical invasion of Phragmites australis in a brackish coastal marsh. Front. Ecol. Evol. 2023, 11, 1171245. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N.; Fletcher, R.S.; Pennington, D. UAV low-altitude remote sensing for precision weed management. Weed Technol. 2017, 32, 2–6. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Anwar, S. Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precis. Agric. 2021, 22, 1711–1727. [Google Scholar] [CrossRef]
- Blossey, B. Before, during and after: The Need for Long-Term Monitoring in Invasive Plant Species Management. Biol. Invasions 1999, 1, 301–311. [Google Scholar] [CrossRef]
Site Name | Date Treated | Temperature (°C) | Wind Speed (kph) | Classified Lepidium (ha) | Area Treated (ha) |
---|---|---|---|---|---|
Grizzly/Gum Tree | 28 April | 27 | 5 | 0.16 | 1.1 |
Westwind/Gum Tree | 5 May | 26 | 9 | 0.09 | 0.8 |
Westwind | 5 May | 26 | 9 | 2.99 | 1.8 |
Mallard Haven | 7 May | 28 | 8 | 0.15 | 2.7 |
Miramonte | 7 May | 28 | 8 | 0.39 | 1.8 |
Lower Joice | 8 May | 28 | 5 | 0.56 | 1.0 |
Morrow Island | 8 May | 28 | 5 | 0.20 | 3.4 |
Honker Farms | 8 May | 28 | 5 | 0.42 | 1.5 |
Site | Quadrats w/LELA | % of Quadrats Covered by LELA | Total Area of LELA (m2) | Area of LELA Affected (m2) | Efficacy (%) |
---|---|---|---|---|---|
Grizzly/Gum Tree | 49 | 24 | 11.8 | 9.6 | 82.0 |
Westwind/Gum Tree | 29 | 54 | 15.7 | 15.5 | 99.1 |
Westwind | 60 | 52 | 31.2 | 30.5 | 97.8 |
Mallard Haven | 93 | 18 | 16.7 | 4.8 | 28.6 |
Miramonte | 100 | 44 | 44.0 | 41.7 | 94.9 |
Lower Joice | 86 | 33 | 28.4 | 23.5 | 82.9 |
Morrow Island | 100 | 56 | 56.0 | 50.1 | 89.4 |
Honker Farms | 60 | 24 | 14.4 | 12.8 | 89.2 |
TOTAL | 577 | 38 | 219.3 | 189.7 | 86.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takekawa, J.Y.; Hagani, J.S.; Edmunds, T.J.; Collins, J.M.; Chappell, S.C.; Reynolds, W.H. The Sky Is Not the Limit: Use of a Spray Drone for the Precise Application of Herbicide and Control of an Invasive Plant in Managed Wetlands. Remote Sens. 2023, 15, 3845. https://doi.org/10.3390/rs15153845
Takekawa JY, Hagani JS, Edmunds TJ, Collins JM, Chappell SC, Reynolds WH. The Sky Is Not the Limit: Use of a Spray Drone for the Precise Application of Herbicide and Control of an Invasive Plant in Managed Wetlands. Remote Sensing. 2023; 15(15):3845. https://doi.org/10.3390/rs15153845
Chicago/Turabian StyleTakekawa, John Y., Jason S. Hagani, Timothy J. Edmunds, Jesirae M. Collins, Steven C. Chappell, and William H. Reynolds. 2023. "The Sky Is Not the Limit: Use of a Spray Drone for the Precise Application of Herbicide and Control of an Invasive Plant in Managed Wetlands" Remote Sensing 15, no. 15: 3845. https://doi.org/10.3390/rs15153845
APA StyleTakekawa, J. Y., Hagani, J. S., Edmunds, T. J., Collins, J. M., Chappell, S. C., & Reynolds, W. H. (2023). The Sky Is Not the Limit: Use of a Spray Drone for the Precise Application of Herbicide and Control of an Invasive Plant in Managed Wetlands. Remote Sensing, 15(15), 3845. https://doi.org/10.3390/rs15153845